Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Of all pattern recognition receptors (PRR) in innate immunity, Toll-like receptor 2 (TLR2) recognizes the structurally broadest range of different bacterial compounds known as pathogen-associated molecular patterns (PAMPs). TLR2 agonists identified so far are lipopolysaccharides (LPSs) from different bacterial strains, lipoproteins, (synthetic) lipopeptides, lipoarabinomannans, lipomannans, glycosylphosphatidylinositol, lipoteichoic acids (LTA), various proteins including lipoproteins and glycoproteins, zymosan, and peptidoglycan (PG). Because these molecules are structurally diverse, it seems unlikely that TLR2 has the capability to react with all agonists to the same degree. The aim of this review is to identify and describe well-defined structure-function relationships for TLR2. Because of its biomedical importance and because its genetics and biochemistry are presently most completely known among all Gram-positive bacteria, we have chosen Staphylococcus aureus as a focus. Our data together with those reported by other groups reveal that only lipoproteins/lipopeptides are sensed at physiologically concentrations by TLR2 at picomolar levels. This finding implies that the activity of all other putative bacterial compounds so far reported as TLR2 agonists was most likely due to contaminating highly active natural lipoproteins and/or lipopeptides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.imbio.2008.02.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!