Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Several quantitative structure-property relationship (QSPR) approaches have been explored for the prediction of aqueous solubility or aqueous solvation free energies, DeltaG(sol), as crucial parameter affecting the pharmacokinetic profile and toxicity of chemical compounds. It is mostly accepted that aqueous solvation free energies can be expressed quantitatively in terms of properties of the molecular surface electrostatic potentials of the solutes. In the present study we have introduced autocorrelation molecular electrostatic potential (autoMEP) vectors in combination with nonlinear response surface analysis (RSA) as alternative 3D-QSPR strategy to evaluate the aqueous solvation free energy of organic compounds. A robust QSPR model (r(cv)=0.93) has been obtained by using a collection of 248 organic chemicals. An external test set based on 23 molecules confirmed the good predictivity of the autoMEP/RSA model suggesting its further applicability in the in silico prediction of water solubility of large organic compound libraries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmc.2008.03.064 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!