AM1-43 can label sensory nerve fibres and sensory neurons. Permeation of non-selective cation channels of the nerve cell membrane is suggested to be the mechanism responsible for labelling. To identify these channels, two candidates, TRPV1 and TRPV2 were examined by immunocytochemistry in the dental pulp and trigeminal ganglion of rats injected with AM1-43. A part of AM1-43-labelled nerve fibres was also positive for anti-TRPV2 antibody but negative for anti-TRPV1 antibody in the dental pulp. In the trigeminal ganglion, a part of the neuron showed both bright AM1-43 labelling and anti-TRPV2 immunolabelling, but neurons double labelled with AM1-43 and TRPV1 were rare. These results suggest that TRPV2 channels, but not TRPV1 channels, contribute to the fluorescent labelling of AM1-43 in the dental pulp.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.archoralbio.2008.03.001DOI Listing

Publication Analysis

Top Keywords

dental pulp
16
nerve fibres
12
double labelled
8
sensory nerve
8
am1-43 dental
8
pulp trigeminal
8
trigeminal ganglion
8
am1-43
6
histochemistry nerve
4
fibres double
4

Similar Publications

Objectives: This study evaluates the potential of pulp volume/total tooth-volume measurements of canine teeth in relation to chronologic age in patients with cleft lip and palate (CLP). The significance of this study lies in its exploration of the usability of these measurements for age determination in CLP patients, providing a novel perspective to the existing literature.

Methods: Cone beam computed tomography images of 33 patients (16 females, 17 males) with unilateral CLP aged 14-45 years and 33 age- and sex-matched healthy individuals (16 females, 17 males) were retrospectively evaluated.

View Article and Find Full Text PDF

Inflammation is a complex host response to harmful infections or injuries, playing both beneficial and detrimental roles in tissue regeneration. Notably, clinical dentinogenesis associated with caries development occurs within an inflammatory environment. Reparative dentinogenesis is closely linked to intense inflammation, which triggers the recruitment and differentiation of dental pulp stem cells (DPSCs) into the dentin lineage.

View Article and Find Full Text PDF

Background: Indirect pulp treatment (IPT) is often employed in dentistry as a valuable technique for preserving dental vitality. While mineral trioxide aggregate (MTA) remains a popular choice, the need for materials with shorter setting times, lower costs, and minimized discoloration concerns has led to the exploration of alternative options.

Aim: To evaluate and compare the radiographic and clinical outcomes of gel-based MTA Kids e-MTA (Kids-e-Dental, Mumbai, India) with MTA (ProRoot MTA, Dentsply Tulsa, Johnson City, TN, USA).

View Article and Find Full Text PDF

Background: Early childhood caries (ECC) is a multifactorial disease with known etiologic factors and can be very devastating to the oral and general well-being of a child, including psychological impacts on a growing child. Young children constitute a vulnerable population because of their dependence and inability to communicate their needs. Oral health disparities continue to pose critical challenges, as ECC is the most common chronic disease of childhood.

View Article and Find Full Text PDF

Molecular dynamics of chemotactic signalling orchestrates dental pulp stem cell fibrosis during aging.

Front Cell Dev Biol

January 2025

Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China.

Aging often triggers dental pulp fibrosis, resulting in clinical repercussions such as increased susceptibility to dental infections, compromised tooth vitality, and reduced responsiveness to dental interventions. Despite its prevalence, the precise molecular mechanisms underlying this condition remains unclear. Leveraging single-cell transcriptome analysis from both our own and publicly available datasets, we identified Ccrl2 macrophages as particularly vulnerable during the early stages of aging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!