The immune tolerance and de novo vascularization are two highly intriguing processes at the maternal-fetal interface that appear to be central to normal pregnancy outcome. Immune tolerance occurs despite the local presence of an active maternal immune system including macrophages, dendritic cells and specialized CD56(bright)CD16(-) uterine natural killer (uNK) cells (65-70%). Recent observations indicate that the phenotypic and functional repertoire of uNK cells is distinct from peripheral blood NK and endometrial NK cells, challenging the understanding of their temporal occurrence and function. Origin and specialized programming of uNK cells continue to be debated. uNK cells, replete with an armamentarium to kill the foreign, tolerate the conceptus and facilitate pregnancy. Why do these uNK cells remain non-cytotoxic? Are these NK cells 'multitasking' in nature harboring beneficial and detrimental roles in pregnancy? Are there distinct subpopulations of NK cells that may populate the decidua? We propose that the endometrium/decidua functions as an 'inducible tertiary lymphoid tissue' that supports the recruitment and expansion of CD56(bright)CD16(-) NK cells and induces transcriptional up-regulation of angiogenic machinery in response to exposure to local hormonal factors, cytokine milieu and perhaps hypoxia. The angiogenic features of uNK cells could further result in a 'multitasking' phenotype that still remains to be characterized. This article discusses the factors and pathways that bridge the angiogenic and non-cytotoxic response machineries at the maternal-fetal interface.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3042548 | PMC |
http://dx.doi.org/10.1111/j.1600-0897.2008.00595.x | DOI Listing |
Sci Rep
December 2024
Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology NAS RA, 7 Hasratyan Str., Yerevan, 0014, Armenia.
Antiphospholipid syndrome (APS) is associated with recurrent pregnancy morbidity, yet the underlying mechanisms remain elusive. We performed multifaceted characterization of the biological and transcriptomic signatures of mouse placenta and uterine natural killer (uNK) cells in APS. Histological analysis of APS placentas unveiled placental abnormalities, including disturbed angiogenesis, occasional necrotic areas, fibrin deposition, and nucleated red blood cell enrichment.
View Article and Find Full Text PDFMucosal Immunol
December 2024
Microbiology and Immunology Department, Loyola University Health Science Campus, Maywood, IL, United States 60153. Electronic address:
The murine uterus contains three subsets of innate lymphoid cells (ILCs). Innate lymphoid cell type 1 (ILC1) and conventional natural killer (cNK) cells seed the uterus before puberty. Tissue-resident NK (trNK) cells emerge at puberty and vary in number during the estrous cycle.
View Article and Find Full Text PDFJCI Insight
December 2024
Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, Australia.
Curr Opin Allergy Clin Immunol
February 2025
Department of Medicine and Medical Specialties, A. Cardarelli Hospital, Naples, Italy.
Purpose Of Review: We aim to explore the most recent insights into the pathogenesis of recurrent angioedema caused by different mechanisms and then focus on the management and treatment approaches available.
Recent Findings: The recently developed DANCE consensus classification identifies five types of angioedema: mast cell-mediated (AE-MC), bradykinin-mediated, because of intrinsic vascular endothelium dysfunction (AE-VE), drug-induced (AE-DI), and due to unknown mechanisms (AE-UNK). These subtypes require different management with treatment choices targeting the main pathogenetic pathways involved in each form.
Cytokine Growth Factor Rev
November 2024
Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China. Electronic address:
Uterine natural killer (uNK) cells play a pivotal role in promoting placental development and supporting maternal-fetal immune tolerance, primarily through cytokine regulation and growth factor production. While the importance of uNK cells in pregnancy is well-established, the mechanisms of their interactions with trophoblasts and contributions to various pregnancy complications remain incompletely understood. This review highlights recent advancements in understanding uNK cell functions, with a focus on cytokine production, growth factor secretion, and receptor-ligand interactions, particularly involving killer immunoglobulin-like receptors (KIR) and human leukocyte antigen-C (HLA-C).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!