Brains affected by Alzheimer's disease (AD) show a large spectrum of mitochondrial alterations at both morphological and genetic level. The causal link between amyloid beta peptides (AP) and mitochondrial dysfunction has been established in cellular models of AD using Abeta concentrations capable of triggering massive neuronal death. However, mitochondrial changes related to sublethal exposure to Abeta are less known. Here we show that subtoxic, 1 microM Abeta(1-42) exposure does not change the mitochondrial shape of living cells, as visualized upon the uptake of the non-potentiometric fluorescent probe Mitotracker Green and enhanced yellow fluorescent protein (EYFP)-tagged cytochrome c oxidase expression. Immunolocalization of oxidative adducts 8-hydroxy-2'-deoxyguanosine, 8-hydroxyguanine and 8-hydroxyguanosine demonstrates that one-micromolar concentration of Abeta(1-42) is also not sufficient to elicit dramatic qualitative changes in the RNA/DNA oxidative products. However, in comparison with controls, semi-quantitative analysis of the overall mitochondrial mass by integrated fluorescence intensity reveals an ongoing down-regulation in mitochondrial biosynthesis or, conversely, an enhanced autophagic demise of Abeta treated cells. Furthermore, a significant increase of the full-length mitochondrial DNA (mtDNA) from Abeta-treated versus control cells is found, as measured by long range polymerase chain reaction (PCR). Such up-regulation is accompanied by extensive fragmentation of the unamplified mtDNA, probably due to the detrimental effect of Abeta. We interpret these results as a sequence of compensatory responses induced by mtDNA damage, which are devoted to repression of oxidative burst. In conclusion, our findings suggest that early therapeutic interventions aimed at prevention of mitochondrial oxidative damage may delay AD progression and help in treating AD patients.
Download full-text PDF |
Source |
---|
Crit Rev Food Sci Nutr
January 2025
College of Food Science and Engineering, Northwest A&F University, Yangling, China.
spp. exhibit remarkable resilience to extreme environmental stresses, including thermal, acidic, desiccation, and osmotic conditions, posing significant challenges to food safety. Their thermotolerance relies on heat shock proteins (HSPs), thermotolerance genomic islands, enhanced DNA repair mechanisms, and metabolic adjustments, ensuring survival under high-temperature conditions.
View Article and Find Full Text PDFSci Rep
January 2025
vivoVerse, LLC, Austin, TX, 78731, USA.
Developmental toxicity (DevTox) tests evaluate the adverse effects of chemical exposures on an organism's development. Although current testing primarily relies on large mammalian models, the emergence of new approach methodologies (NAMs) is encouraging industries and regulatory agencies to evaluate novel assays. C.
View Article and Find Full Text PDFMol Omics
January 2025
Division of Natural Sciences, New College of Florida, 5800 Bay Shore Road, Sarasota, FL 34243, USA.
Brevetoxins are a type of neurotoxin produced in red tide blooms. Northern quahogs () are extensively used in commercial aquaculture farming, and early-stage metabolomics studies can provide early warnings of brevetoxins for farmers. In this study, NMR-based metabolomics was performed to investigate the response of clam gills and digestive glands under a series of sublethal doses of brevetoxins.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
This study systemically investigated the enantioselective bioaccumulation and degradation of etoxazole (ETZ) in earthworms along with the transcriptome and oxidative stress responses to ETZ enantiomer exposure. Based on the M-shaped bioaccumulation trends for ETZ enantiomers, -ETZ was found to be preferentially bioaccumulated in earthworms. Sublethal toxicity analysis showed that -ETZ induced greater changes in protein content, malondialdehyde content, detoxifying metabolic enzyme activity, and oxidative stress in earthworms, compared to those induced by -ETZ.
View Article and Find Full Text PDFInt J Antimicrob Agents
December 2024
University of Amsterdam, Swammerdam Institute of Life Sciences, Molecular Biology and Microbial Food Safety, Amsterdam, The Netherlands. Electronic address:
Antibiotic resistance is a growing global healthcare challenge, treatment of bacterial infections with fluoroquinolones being no exception. These antibiotics can induce genetic instability through several mechanisms, one of the most significant being the activation of the SOS response. During exposure to sublethal concentration, this stress response increases mutation rates, accelerating resistance evolution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!