Objective: Diabetes mellitus is associated with increased oxidative stress, which induces oxidation of tetrahydrobiopterin (BH4) in vessel wall. Without enough BH4, eNOS is uncoupled to L-arginine and produces superoxide rather than NO. We examined the role of uncoupled eNOS in vascular remodeling in diabetes.
Methods And Results: Diabetes mellitus was produced by streptozotocin in C57BL/6J mice. Under stable hyperglycemia, the common carotid artery was ligated, and neointimal formation was examined 4 weeks later. In diabetic mice, the neointimal area was dramatically augmented. This augmentation was associated with increased aortic superoxide formation, reduced aortic BH4/dihydrobiopterin (BH2) ratio, and decreased plasma nitrite and nitrate (NOx) levels compared with nondiabetic mice. Chronic BH4 treatment (10 mg/kg/d) reduced the neointimal area in association with suppressed superoxide production and inflammatory changes in vessels. BH4/BH2 ratio in vessel wall was preserved, and plasma NOx levels increased. Furthermore, in the presence of diabetes, overexpression of bovine eNOS resulted in augmentation of neointimal area, accompanied by increased superoxide production in the endothelium.
Conclusions: In diabetes, increased oxidative stress by uncoupled NOSs, particularly eNOS, causes augmentation of vascular remodeling. These findings indicate restoration of eNOS coupling has an atheroprotective benefit in diabetes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/ATVBAHA.107.160754 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
The skeleton is highly innervated by numerous nerve fibers. These nerve fibers, in addition to transmitting information within the bone and mediating bone sensations, play a crucial role in regulating bone tissue formation and regeneration. Traditional bone tissue engineering (BTE) often fails to achieve satisfactory outcomes when dealing with large-scale bone defects, which is frequently related to the lack of effective reconstruction of the neurovascular network.
View Article and Find Full Text PDFLung fibrosis, characterized by chronic and progressive scarring, has no cure. Hallmarks are the accumulation of myofibroblasts and extracellular matrix, as well as vascular remodeling. The crosstalk between myofibroblasts and vasculature is poorly understood, with conflicting reports on whether angiogenesis and vessel density are increased or decreased in lung fibrosis.
View Article and Find Full Text PDFMater Today Bio
February 2025
The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
Regenerative biomaterials are commonly used for soft-tissue repair in both pre-clinical and clinical settings, but their effectiveness is often limited by poor regenerative outcomes and volume loss. Efficient vascularization is crucial for the long-term survival and function of these biomaterials in vivo. Despite numerous pro-vascularization strategies developed over the past decades, the fundamental mechanisms of vascularization in regenerative biomaterials remain largely unexplored.
View Article and Find Full Text PDFWorld J Cardiol
January 2025
Chinese Academy Medical Sciences, Fuwai Yunnan Hospital, Kunming 650000, Yunnan Province, China.
Sodium-glucose cotransporter-2 (SGLT-2) inhibitors represent a cutting-edge class of oral antidiabetic therapeutics that operate through selective inhibition of glucose reabsorption in proximal renal tubules, consequently augmenting urinary glucose excretion and attenuating blood glucose levels. Extensive clinical investigations have demonstrated their profound cardiovascular efficacy. Parallel basic science research has elucidated the mechanistic pathways through which diverse SGLT-2 inhibitors beneficially modulate pulmonary vascular cells and arterial remodeling.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Clinical Research Center, Postdoctoral Station of Clinical Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, P. R. China.
Vascular calcification is a highly regulated process in cardiovascular disease (CVD) and is strongly correlated with morbidity and mortality, especially in the adverse stage of vascular remodeling after coronary artery bypass graft surgery (CABG). However, the pathogenesis of vascular graft calcification, particularly the role of endothelial-smooth muscle cell interaction, is still unclear. To test how ECs interact with SMCs in artery grafts, single-cell analysis of wild-type mice is first performed using an arterial isograft mouse model and found robust cytokine-mediated signaling pathway activation and SMC proliferation, together with upregulated endothelial tripartite motif 35 (TRIM35) expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!