Defining genetic variation associated with complex human diseases requires standards based on high-quality DNA from well-characterized patients. With the development of robust technologies for whole-genome amplification, sample repositories such as serum banks now represent a potentially valuable source of DNA for both genomic studies and clinical diagnostics. We assessed the performance of whole-genome amplified DNA (wgaDNA) derived from stored serum/plasma on high-density single nucleotide polymorphism arrays. Neither storage time nor usage history affected either DNA extraction or whole-genome amplification yields; however, samples that were thawed and refrozen showed significantly lower call rates (73.9 +/- 7.8%) than samples that were never thawed (92.0 +/- 3.3%) (P < 0.001). Genotype call rates did not differ significantly (P = 0.13) between wgaDNA from never-thawed serum/plasma (92.9 +/- 2.6%) and genomic DNA (97.5 +/- 0.3%) isolated from whole blood. Approximately 400,000 genotypes were consistent between wgaDNA and genomic DNA, but the overall discordance rate of 4.4 +/- 3.8% reflected an average of 11,110 +/- 9502 genotyping errors per sample. No distinct patterns of chromosomal clustering were observed for single nucleotide polymorphisms showing discordant genotypes or homozygote conversion. Because the effects of genotyping errors on whole-genome studies are not well defined, we recommend caution when applying wgaDNA from serum/plasma to high-density single nucleotide polymorphism arrays in addition to the use of stringent quality control requirements for the resulting genotype data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2329790 | PMC |
http://dx.doi.org/10.2353/jmoldx.2008.070155 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!