Although numerous studies have shown that both androgenic and estrogenic steroids increase rate and efficiency of muscle growth in steers, there is little consensus as to their mechanism of action. A combined estradiol 17beta (E2)/trenbolone acetate (TBA) implant causes a significant increase in muscle IGF-I mRNA and both E2 and TBA stimulate a significant increase in IGF-I mRNA level in bovine satellite cell (BSC) cultures in media containing 10% fetal bovine serum (FBS). Consequently, increased IGF-I expression may play a role in anabolic-steroid-enhanced muscle growth. However, even though treatment of cultured BSC with E2 or TBA in media containing 1% IGFBP-3-free swine serum (SS) results in increased proliferation there is no effect on IGF-I mRNA expression, suggesting that increased IGF-I expression may not be responsible for anabolic-steroid-enhanced BSC proliferation. To further examine the role of estrogen, androgen and IGF-I receptors and their respective ligands in E2- and TBA-stimulated BSC proliferation, we assessed the effects of specific inhibitors on E2- or TBA-stimulated proliferation of BSC. Both ICI 182 780 (an estrogen receptor blocker) and flutamide (an inhibitor of androgen receptor) suppressed (p<0.05) E2- and TBA-stimulated BSC proliferation, respectively. JB1 (a competitive inhibitor of IGF-I binding to type I IGF receptor) reduced (p<0.05) both E2- and TBA-stimulated proliferation in BSC cultures. Both the Raf-1/MAPK kinase (MEK)1/2/ERK1/2, and the phosphatidylinositol 3-kinase (PI3K)/Akt pathways play significant roles in the actions of IGF-I on proliferation and differentiation of myogenic cells. PD98059, an inhibitor of the MAPK pathway, and wortmannin, an inhibitor of the PI3K pathway, both suppressed (p<0.05) E2- and TBA-stimulated proliferation of cultured BSC. Our data suggest that IGF-I plays a role in E2- and TBA-stimulated proliferation of cultured BSC even in the absence of increased IGF-I expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.domaniend.2008.02.003 | DOI Listing |
Int J Mol Sci
January 2025
Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.
Insulin receptor substrates (IRSs) are well-known mediators of the insulin and insulin-like growth factor (IGF)-I signaling pathways. We previously reported that the protein levels of IRS-2, a molecular species of IRS, were upregulated in the livers of rats fed a protein-restricted diet. This study aimed to elucidate the physiological role of IRS-2, whose level increases in response to protein restriction in cultured hepatocyte models.
View Article and Find Full Text PDFMedicina (Kaunas)
January 2025
Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
Insulin-like growth factor-1 (IGF-1) plays a vital role in various cellular processes, including those involving stem cells. This study evaluated the effects of IGF-1 on cell survival, osteogenic differentiation, and mRNA expression in gingiva-derived mesenchymal stem cell spheroids. Using concave microwells, spheroids were generated in the presence of IGF-1 at concentrations of 0, 10, and 100 ng/mL.
View Article and Find Full Text PDFMol Med Rep
March 2025
Department of Pathology, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece.
Intrauterine growth restriction (IUGR) is the second most common obstetric complication after preterm labor. Appropriate trophoblast differentiation and placental structure, growth and function are key for the maintenance of pregnancy and normal fetal growth, development and survival. Extravillous trophoblast cell proliferation, migration and invasion are regulated by molecules produced by the fetomaternal interface, including autocrine factors produced by the trophoblast, such as insulin‑like growth factor (IGF)‑1.
View Article and Find Full Text PDFGenes (Basel)
November 2024
Institute of Animal Husbandry and Veterinary Medicine, Ji Lin Academy of Agricultural Sciences, Gongzhuling 136100, China.
: Cultivated meat, an alternative to conventional meat, has substantial potential for alleviating environmental and ethical concerns. This method of manufacturing meat involves the isolation of skeletal muscle satellite cells (SMSCs) from donor animals, after which they proliferate in vitro and differentiate into primitive muscle fibers. The aim of this research was to evaluate how the insulin-like growth factor 1 (IGF1) gene regulates the myogenic differentiation of bovine skeletal muscle satellite cells (bSMSCs).
View Article and Find Full Text PDFSci Rep
January 2025
Departments of Ophthalmology, Sapporo Medical University School of Medicine, S-1 W-16, Chuo-Ku, Sapporo, 060-8543, Japan.
To elucidate the role of IGF1R inhibition in the pathogenesis of Graves' orbitopathy (GO), the effects of linsitinib (Lins) on a recombinant human TSHR antibody (M22) and IGF1 to activate TSHR and IGF1R of human orbital fibroblasts (HOFs) obtained from patients without GO (HOFs) and patients with GO (GHOFs) were studied using in vitro three-dimensional (3D) spheroid models in addition to their 2D planar cell culture. For this purpose, we evaluated 1) cellular metabolic functions by using a seahorse bioanalyzer (2D), 2) physical properties including size and stiffness of 3D spheroids, and mRNA expression of several extracellular matrix (ECM) proteins, their modulators (CCL2 LOX, CTGF, MMPs), ACTA2 and inflammatory cytokines (IL1β, IL6). Administration of IGF1 and M22 induced increases of cellular metabolic functions with the effect on HOFs being much more potent than the effect on GHOFs, suggesting that IGF1R and TSHR of GHOFs may already be stimulated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!