The surface complex [([triple bond]SiO)Re([triple bond]CtBu)(=CHtBu)(CH2tBu)] (1) is a highly efficient propene metathesis catalyst with high initial activities and a good productivity. However, it undergoes a fast deactivation process with time on stream, which is first order in active sites and ethene. Noteworthy, 1-butene and pentenes, unexpected products in the metathesis of propene, are formed as primary products, in large amount relative to Re (>>1 equiv/Re), showing that their formation is not associated with the formation of inactive species. DFT calculations on molecular model systems show that byproduct formation and deactivation start by a beta-H transfer trans to the weak sigma-donor ligand (siloxy) at the metallacyclobutane intermediate having a square-based pyramid geometry. This key step has an energy barrier slightly higher than that calculated for olefin metathesis. After beta-H transfer, the most accessible pathway is the insertion of ethene in the Re-H bond. The resulting pentacoordinated trisperhydrocarbyl complex rearranges via either (1) alpha-H abstraction yielding the unexpected 1-butene byproduct and the regeneration of the catalyst or (2) beta-H abstraction leading to degrafting. These deactivation and byproduct formation pathways are in full agreement with the experimental data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja800189a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!