Reporting a new class of divanadium(V) compounds connected by an unsupported hydroxo bridge.

Inorg Chem

Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700 032, India.

Published: May 2008

Dinuclear oxovanadium(V) compounds [LV(V)O(mu-OH)OV (V)L](PF6) [H2L = N,N'-tert-ethylene bis(salicylideneimine) (H 2Salen) and its derivatives] ( 1- 3) have been obtained by aerial oxidation of V (IV)OL precursors in THF in the presence of added NH 4PF 6. The oxidized vanadium(V) probably extracts an OH (-) ligand from the residual moisture in the solvent and is retained as an unsupported hydroxo-bridge between the metal centers of these compounds as confirmed by single-crystal X-ray diffraction analyses. The molecules of 1- 3 have centrosymmetric structures with each vanadium center having a distorted octahedral geometry. The bridging OH (-) group is located trans to the terminal VO t bond. The latter exerts strong trans labilizing influence to set the participating vanadium centers apart by about 4.1 A. These separations are by far the largest (e.g., V...V#, 4.131 A in 1) among all binuclear compounds containing an unsupported hydroxo bridge reported to date. The complexes retain their identity also in solution as established by (1)H NMR spectroscopy. Electrochemically, the behaviors of 1-3 are quite interesting as studied by cyclic voltammetry in acetonitrile, each undergoing three (except 3) nearly reversible metal-based reductions, all in the positive potential range (e.g., at E (1/2) = 0.57, 0.39, and 0.04 V versus Ag/AgCl reference for 1) as indicated by steady state voltammetry. The electrode process at 0.39 V appears to involve a single-step two-electron transfer as revealed from the normal and differential pulse voltammetric data and probably includes a combination of V(V)-V(IV) <--> V(III)-V(IV) mixed oxidation states. Compounds 1-3 thus provide a unique example of divanadium compounds in which the metal centers are linked by an unsupported hydroxo-bridge.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic702286hDOI Listing

Publication Analysis

Top Keywords

unsupported hydroxo
8
hydroxo bridge
8
unsupported hydroxo-bridge
8
metal centers
8
compounds
6
reporting class
4
class divanadiumv
4
divanadiumv compounds
4
compounds connected
4
unsupported
4

Similar Publications

Iron centers featuring thiolates in their metal coordination sphere (as ligands or substrates) are well-known to activate dioxygen. Both heme and non-heme centers that contain iron-thiolate bonds are found in nature. Investigating the ability of iron-thiolate model complexes to activate O is expected to improve the understanding of the key factors that direct reactivity to either iron or sulfur.

View Article and Find Full Text PDF

The encapsulating N1,N3-bis(3-methoxysalicylidene)diethylenetriamine (H2valdien) ligand was employed to isolate two novel Dy(III) compounds which contain rare bridging pathways for lanthanide systems. Compound 1, [Na2Dy(III)2(valdien)2(μ-OH)(dbm)2(H2O)2][Na2Dy(III)2(valdien)2(μ-OH)(NO3)2(dbm)2], where dbm(-) is dibenzoylmethanido, and compound 2, [Na3Dy(III)2(valdien)2(μ-F)(μ3-F)2(Cl)2(MeOH)2]n·0.5(MeOH)·(H2O), both exhibit linear lone hydroxo- and fluoro-bridges, respectively, between the metal centers.

View Article and Find Full Text PDF

The diiron unit is commonly found as the active site in enzymes that catalyze important biological transformations. Two μ-(hydr)oxo-diiron(iii) complexes with the ligands 2,2'-(2-methyl-2-(pyridine-2-yl)propane-1,3-diyl)bis(azanediyl)bis(methylene)diphenol (H2L) and 2,2'-(2-methyl-2(pyridine-2-yl)propane-1,3-diyl)bis(azanediyl)bis(methylene)bis(4-nitrophenol) (H2L(NO2)), namely [(FeL)2(μ-O)] () and [(FeL(NO2))2(μ-OH)]ClO4 () were synthesized and characterized. In the solid state, both structures are asymmetric, with unsupported (hydr)oxo bridges.

View Article and Find Full Text PDF

Reporting a new class of divanadium(V) compounds connected by an unsupported hydroxo bridge.

Inorg Chem

May 2008

Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700 032, India.

Dinuclear oxovanadium(V) compounds [LV(V)O(mu-OH)OV (V)L](PF6) [H2L = N,N'-tert-ethylene bis(salicylideneimine) (H 2Salen) and its derivatives] ( 1- 3) have been obtained by aerial oxidation of V (IV)OL precursors in THF in the presence of added NH 4PF 6. The oxidized vanadium(V) probably extracts an OH (-) ligand from the residual moisture in the solvent and is retained as an unsupported hydroxo-bridge between the metal centers of these compounds as confirmed by single-crystal X-ray diffraction analyses. The molecules of 1- 3 have centrosymmetric structures with each vanadium center having a distorted octahedral geometry.

View Article and Find Full Text PDF

With the established chemistry of bridged [(porphyrinate)FeIII-X-CuII(ligand)]n+ [X = O2- (oxo), OH- (hydroxo), O22- (peroxo)] complexes, we investigated the effect of cobalt ion substitution for copper or copper and iron. Thus, in this report, the generation and characterization of new mu-oxo, micro-hydroxo, and micro-peroxo (micro-X) assemblies of [(porphyrinate)MIII-X-CoII/III(TMPA)]n+ assemblies is described, where M = FeIII or CoIII and TMPA = tris(2-pyridylmethyl)amine. The mu-oxo complex [(F8TPP)FeIII-O-CoII(TMPA)]+ (1, F8TPP = tetrakis(2,6-difluorphenyl)porphyrinate) was isolated by an acid-base self-assembly reaction of a 1:1 mixture of (F8TPP)FeIII-OH and [CoII(TMPA)(MeCN)]2+ upon addition of triethylamine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!