A near-infrared dye for multichannel imaging.

Chem Commun (Camb)

Vanderbilt University Institute of Imaging Science, 1161 21st Avenue South, AA. 1105 MCN, Nashville, TN 37232-2310, USA.

Published: April 2008

A large Stokes shift dye, composed of water-solubility and near-infrared feature, was developed for multichannel imaging applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2646119PMC
http://dx.doi.org/10.1039/b719028jDOI Listing

Publication Analysis

Top Keywords

multichannel imaging
8
near-infrared dye
4
dye multichannel
4
imaging large
4
large stokes
4
stokes shift
4
shift dye
4
dye composed
4
composed water-solubility
4
water-solubility near-infrared
4

Similar Publications

The time-resolved backlight imaging of plasma is crucial for diagnosing density-dependent plasma information. It requires a high-intensity X-ray source and efficient optics. We propose a quasi-coaxial, multi-channel Kirkpatrick-Baez (KB) structure that realizes high-brightness illumination.

View Article and Find Full Text PDF

Orbital angular momentum (OAM), with its unique orthogonality, is widely applied in optical holographic encryption and information storage. Theoretically, the topological charge of OAM holography is infinite. However, in practice, it is restricted by the Nyquist-Shannon sampling theorem and experimental equipment, resulting in a relatively small number of practically usable channels.

View Article and Find Full Text PDF

Three-dimensional (3D) light-field displays can provide natural stereoscopic visual perception and an intuitive viewing experience. However, the high production threshold and the lack of user-friendly editing tools for light-field images make it difficult to efficiently and conveniently generate 3D light-field content that meets various needs. Here, a text-driven light-field content editing method for 3D light-field display based on Gaussian splatting is presented.

View Article and Find Full Text PDF

Multi-channel multiplexing metasurfaces have attracted considerable interest with the growing demand for multifunctional integration and enhanced communication capabilities. Dynamic tuning of electromagnetic waves with multiple degrees of freedom is a key approach to improving information processing capabilities. Metasurfaces with chiral meta-atoms and Janus metasurfaces with asymmetric transmission properties introduce new degrees of freedom for multiplexing technologies.

View Article and Find Full Text PDF

Selective activation of mesoscale functional circuits via multichannel infrared stimulation of cortical columns in ultra-high-field 7T MRI.

Cell Rep Methods

January 2025

Department of Neurosurgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310029, China; Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China; National Key Laboratory of Brain and Computer Intelligence, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China; MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310012, China. Electronic address:

To restore vision in the blind, advances in visual cortical prosthetics (VCPs) have offered high-channel-count electrical interfaces. Here, we design a 100-fiber optical bundle interface apposed to known feature-specific (color, shape, motion, and depth) functional columns that populate the visual cortex in humans, primates, and cats. Based on a non-viral optical stimulation method (INS, infrared neural stimulation; 1,875 nm), it can deliver dynamic patterns of stimulation, is non-penetrating and non-damaging to tissue, and is movable and removable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!