One of the hallmarks of arthritis is swollen joints containing unusually high quantities of hyaluronan. Intact hyaluronan molecules facilitate cell migration by acting as ligands for CD44. Hyaluronan degradation products, readily formed at sites of inflammation, also fuel inflammatory processes. Irrespective of whether viruses could be a cause of rheumatoid arthritis, there is clear evidence that links viral infections to this debilitating disease. For this study, live Epstein-Barr virus and a number of double- and single-stranded synthetic viral analogs were tested for their effectiveness as activators of hyaluronan (HA) synthesis. As shown herein, Epstein-Barr virus-treated fibroblast-like synoviocytes significantly increase HA production and release. Real time reverse transcription-PCR data show that HAS1 mRNA levels are significantly elevated in virus-treated cells, whereas mRNA levels for the genes HAS2 and HAS3 remain unchanged. As to the mechanism of virus-induced HAS1 transcription, data are presented that imply that among the double- and single-stranded polynucleotides tested, homopolymeric polycytidylic structures are the most potent inducers of HAS1 transcription and HA release, whereas homopolymeric polyinosinic acid is without effect. Analyses of virus-induced signal cascades, utilizing chemical inhibitors of MAPK and overexpressing mutated IKK and IkappaB, revealed that the MAPK p38 as well as the transcription factor NF-kappaB are essential for virus-induced activation of HAS1. The presented data implicate HAS1 as the culprit in unfettered HA release and point out targets in virus-induced signaling pathways that might allow for specific interventions in cases of unwanted and uncontrolled HA synthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M801669200 | DOI Listing |
J Phys Chem Lett
January 2025
State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
Surface-enhanced Raman spectroscopy (SERS) has become an indispensable tool for biomolecular analysis, yet the detection of DNA signals remains hindered by spectral interference from citrate ions, which overlap with key DNA features. This study introduces an innovative, ultrasensitive SERS platform utilizing thiol-modified silver nanoparticles (Ag@SDCNPs) that overcomes this challenge by eliminating citrate interference. This platform enables direct, interference-free detection and structural characterization of a wide range of DNA conformations, including single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), i-motif, hairpin, G-quadruplex, and triple-stranded DNA (tsDNA).
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China. Electronic address:
Sugarcane smut is a widespread fungal disease, which severely impairs the quality and sugar yield of sugarcane. Early detection is crucial for mitigating its impact, which makes the development of a highly sensitive and accurate detection method essential. Herein, the Mn-doped zeolite imidazolate framework (ZIF-67), synthesized via a nano-confined-reactor approach, is designed to significantly enhance electron transport and boost the enzyme loading capacity within biofuel cells, thereby potentially enhancing their overall performance.
View Article and Find Full Text PDFJ Bacteriol
January 2025
Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Mobile genetic elements help drive horizontal gene transfer and bacterial evolution. Conjugative elements and temperate bacteriophages can be stably maintained in host cells. They can alter host physiology and regulatory responses and typically carry genes that are beneficial to their hosts.
View Article and Find Full Text PDFACS Appl Nano Mater
June 2024
Department of Chemistry, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio 44106, United States.
DNA nanotechnology has made initial progress toward developing gene-encoded DNA origami nanoparticles (NPs) that display potential utility for future gene therapy applications. However, due to the challenges involved with gene delivery into cells including transport through the membrane, intracellular targeting, and inherent expression of nucleases along with interference from other active proteins, it can be difficult to more directly study the effect of DNA NP design on subsequent gene expression. In this work, we demonstrate an approach for studying the expression of gene-encoding DNA origami NPs without the use of cells.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Biomedical Engineering, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada.
Synthetic ssDNA oligonucleotides hold great potential for various applications, including DNA aptamers, DNA digital data storage, DNA origami, and synthetic genomes. In these contexts, precise control over the synthesis of the ssDNA strands is essential for generating combinatorial sequences with user-defined parameters. Desired features for creating synthetic DNA oligonucleotides include easy manipulation of DNA strands, effective detection of unique DNA sequences, and a straightforward mechanism for strand elongation and termination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!