Transepithelial Cl(-) and HCO(3)(-) transport is critically important for the function of all epithelia and, when altered or ablated, leads to a number of diseases, including cystic fibrosis, congenital chloride diarrhea, deafness, and hypotension (78, 111, 119, 126). HCO(3)(-) is the biological buffer that maintains acid-base balance, thereby preventing metabolic and respiratory acidosis (48). HCO(3)(-) also buffers the pH of the mucosal layers that line all epithelia, protecting them from injury (2). Being a chaotropic ion, HCO(3)(-) is essential for solubilization of ions and macromolecules such as mucins and digestive enzymes in secreted fluids. Most epithelia have a Cl(-)/HCO(3) exchange activity in the luminal membrane. The molecular nature of this activity remained a mystery for many years until the discovery of SLC26A3 and the realization that it is a member of a new family of Cl(-) and HCO(3)(-) transporters, the SLC26 family (73, 78). This review will highlight structural features, the functional diversity, and several regulatory aspects of the SLC26 transporters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/physiol.00037.2007 | DOI Listing |
Environ Geochem Health
January 2025
Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
Studies regarding geochemical partitioning and leaching behavior of Hofmeister ions, which is considered as a risk/causative factor for chronic kidney disease of unknown etiology (CKDu), are scarce. Therefore, Hofmeister ions' leaching behavior of partially weathered rocks from CKDu endemic (Girandurukotte) and non-endemic (Sewanagala) areas, Sri Lanka were compared. Rock mineralogy was analyzed using X-ray Diffraction, and total ion contents were determined using alkaline and acid digestions.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
Groundwater arsenic (As), contamination is a significant issue worldwide including China and Pakistan, particularly in canal command areas. In this study, 131 groundwater samples were collected, and three machine learning models [Random Forest (RF), Logistic Regression (LR), and Artificial Neural Network (ANN)] were employed to predict As concentration. Descriptive statistics helped to conclude that all of the samples were inside the permitted limit of WHO for pH, Ca, Mg, Turbidity, Cl, K, Na, SO, NO, F and beyond limit of WHO for EC, HCO, TDS, and As.
View Article and Find Full Text PDFEnviron Res
January 2025
Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Jalan Tungku Link Gadong, BE1410, Brunei Darussalam.
Bismuth-based photocatalysts proved to have remarkable photoactivity for antibiotic degradation from water. However, the two significant challenges of bismuth-based photocatalysts are the fast charge recombination rate and higher energy band gap. This study successfully synthesised a novel I-Bi/BiWO/MWCNTs (C-WBI) heterostructure composite photocatalysts with shorter energy band-gap and higher charge production capability through interfacial amidation linkage.
View Article and Find Full Text PDFNeuropsychopharmacol Hung
December 2024
Municipal Clinic of Szentendre, Internal Medicine, Szentendre, Hungary.
Sci Rep
January 2025
Ordos Institute of Liaoning Technical University, Liaoning Technical University, Ordos, 017000, China.
This study focuses on the construction and interpretation of a mine water inrush source identification model to enhance the precision and credibility of the model. For water inrush source identification and feature analysis, a novel method combining XGBoost and SHAP is suggested. The model uses Ca, Mg, K + Na, HCO, Cl, SO, Hardness, and pH as discriminators, and the key parameters in the XGBoost model are optimized by introducing the improved sparrow search algorithm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!