In insects transferrin is known as an iron transporter, an antibiotic agent, a vitellogenin, and a juvenile hormone regulated protein. Here, a novel functional role for insect transferrin as an antioxidant protein is demonstrated. Stressors, such as heat shock, fungal challenge, and H(2)O(2) exposure, cause upregulation of the white-spotted flower chafer Protaetia brevitarsis (Coleoptera: Scarabaeidae) transferrin (PbTf) mRNA in the fat body and increases PbTf protein levels in the hemolymph. RNA interference (RNAi) treated PbTf reduction causes increased iron and H(2)O(2) levels in the hemolymph and results in induction of apoptotic cell death in the fat body during exposure to stress. The observed effects of PbTf RNAi suggest that PbTf inhibits stress-induced apoptosis by diminishing the Fenton reaction via the binding of iron, thus supporting an antioxidant role for PbTf in stress responses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpb.2008.02.009 | DOI Listing |
Biochem Biophys Res Commun
December 2024
Guangxi Eco-Engineering Vocational &Technical College, Liuzhou, Guangxi, 545004, PR China.
Mating exerts profound and multifaceted effects on the physiology of female insects, particularly influencing metabolic alterations and bolstering stress resilience. Drosophila melanogaster has emerged as an excellent model to investigate the mechanism of neurodegenerative diseases. However, interplay between mating and its impact on the Drosophila brain remains a tantalizing enigma, awaiting elucidation.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2024
Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China. Electronic address:
Transferrin (Tsf) is a highly conserved multifunctional protein involved in insect physiology, defense and development that has been developed as a novel RNA interference (RNAi)-based target for pest control. The function study of the Tsf gene in Odontotermes formosanu (Shiraki) was evaluated for synergistic control of this agroforestry pest with Serratia marcescens (SM1), Bacillus thuringiensis (Bt) or Beauveria bassiana (Bb). The Tsf gene of O.
View Article and Find Full Text PDFmBio
August 2024
Research group Genetics of Host-Microbe Interactions, Max Planck Institute for Infection Biology, Berlin, Germany.
Unlabelled: Facultative endosymbiotic bacteria, such as and species, are commonly found in association with insects and can dramatically alter their host physiology. Many endosymbionts are defensive and protect their hosts against parasites or pathogens. Despite the widespread nature of defensive insect symbioses and their importance for the ecology and evolution of insects, the mechanisms of symbiont-mediated host protection remain poorly characterized.
View Article and Find Full Text PDFNat Commun
May 2024
University of Alberta, Faculty of Science, Edmonton, Alberta, T6G 2E9, Canada.
Vesicular transport is essential for delivering cargo to intracellular destinations. Evi5 is a Rab11-GTPase-activating protein involved in endosome recycling. In humans, Evi5 is a high-risk locus for multiple sclerosis, a debilitating disease that also presents with excess iron in the CNS.
View Article and Find Full Text PDFInsect Biochem Mol Biol
May 2024
Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA. Electronic address:
Transferrin 1 (Tsf1) is an insect-specific iron-binding protein that is abundant in hemolymph and other extracellular fluids. It binds iron tightly at neutral pH and releases iron under acidic conditions. Tsf1 influences the distribution of iron in the body and protects against infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!