A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sample preparation optimization in wine and grapes. Dilution and sample/headspace volume equilibrium theory for headspace solid-phase microextraction. | LitMetric

Sample preparation optimization in wine and grapes. Dilution and sample/headspace volume equilibrium theory for headspace solid-phase microextraction.

J Chromatogr A

CSIRO Plant Industry and Food Futures Flagship, P.O. Box 350, Glen Osmond, SA 5064, Australia.

Published: May 2008

Most headspace solid-phase microextraction (HS-SPME) volatile analysis methods have been developed for aqueous samples and have been either adapted or applied to complex matrices. This study examines sample/headspace equilibrium based on realistic (non-spiked) concentration levels in real complex sample matrices (grapes and wine) with a systematic multivariate statistical approach. The presence and absence of matrix effects are explained through exponential and linear relationships, respectively. The potential of over- and underestimating volatile compounds in a diluted sample is illustrated and the common dilution equation (C1V1=C2V2) is shown to not always apply to headspace volatile analysis. Additionally, sample dilution was shown to be more sensitive to matrix effects than sample/headspace volume variations with the latter showing analyte dependency. An optimum sample size of 6.9-8.6g in a 20mL vial without dilution was observed. This study shows that sensitivity and limit of detection (LOD) can be improved to a limit with a subsequent loss - an extension to existing theory. The study further illustrates that in trying to bring an analyte within linear range through sample dilution, sensitivity and LOD can be lost with a probable shift in optimum ranges and sample/headspace equilibrium.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2008.03.053DOI Listing

Publication Analysis

Top Keywords

sample/headspace volume
8
headspace solid-phase
8
solid-phase microextraction
8
volatile analysis
8
sample/headspace equilibrium
8
matrix effects
8
sample dilution
8
sample
6
dilution
5
sample preparation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!