We have shown previously that isolated heat shock protein 90 (HSP90) and nitric oxide synthase (NOS), once associated in a heterocomplex, become completely resistant to calpain digestion. In this study, it is shown that, in vivo, under conditions of calpain activation, the protection of NOS degradation occurs. In addition, the extent of NOS degradation is a function of the level of HSP90 expression. Thus, in rat brain, which contains a large excess of HSP90, almost all neuronal NOS is associated with the chaperone protein. In this condition, neuronal NOS retains its full catalytic activity, although limited proteolytic conversion to still active low-molecular-mass (130 kDa) products takes place. In contrast, in aorta, which contains much smaller amounts of HSP90, endothelial NOS is not completely associated with the chaperone, and undergoes extensive degradation with a loss of protein and catalytic activity. On the basis of these findings, we propose a novel role of the HSP90-NOS heterocomplex in protecting in vivo NOS from proteolytic degradation by calpain. The efficiency of this effect is directly related to the level of intracellular HSP90 expression, generating a high HSP90 to NOS ratio, which favours both the formation and stabilization of the HSP90-NOS heterocomplex. This condition seems to occur in rat brain, but not in aorta, thus explaining the higher vulnerability to proteolytic degradation of endothelial NOS relative to neuronal NOS.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1742-4658.2008.06394.xDOI Listing

Publication Analysis

Top Keywords

nitric oxide
8
oxide synthase
8
heat shock
8
shock protein
8
protein hsp90
8
hsp90 expression
8
rat brain
8
associated chaperone
8
catalytic activity
8
hsp90-nos heterocomplex
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!