White-footed mice (Peromyscus leucopus) serve as the principal reservoir for Borrelia burgdorferi and have been shown to remain infected for life. Complex infections with multiple genetic variants of B. burgdorferi occur in mice through multiple exposures to infected ticks or through exposure to ticks infected with multiple variants of B. burgdorferi. Using a combination of cloning and single strand conformation polymorphism (SSCP), B. burgdorferi ospC variation was assessed in serial samples collected from individual P. leucopus during a single transmission season. In individuals with ospC variation, at least seven ospC variants were recognized at each time point. One to four of these variants predominated at each time point; however, the predominant variants seldom remained consistent in an individual mouse throughout the entire sampling period. These results confirmed that mice in southern Maryland were persistently infected with multiple variants of B. burgdorferi throughout the transmission season. However, the presence of multiple ospC variants and the fluctuations in the frequency of these variants indicates that either new ospC variants are regularly introduced to this mouse population and predominate while the existing infections are cleared, or that the variation detected in the genetic profile at different time points reflects a complex mixture of B. burgdorferi populations whose relative frequencies may continually change.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2978052 | PMC |
http://dx.doi.org/10.1089/vbz.2007.0222 | DOI Listing |
Nucleotide sequence can be translated in three reading frames from 5' to 3' producing distinct protein products. Many examples of RNA translation in two reading frames (dual coding) have been identified so far. We report simultaneous translation of mRNA transcripts derived from locus in all three reading frames that result in the synthesis of long proteins.
View Article and Find Full Text PDFThe growing body of experimental and computational studies suggested that the cross-neutralization antibody activity against Omicron variants may be driven by balance and tradeoff of multiple energetic factors and interaction contributions of the evolving escape hotspots involved in antigenic drift and convergent evolution. However, the dynamic and energetic details quantifying the balance and contribution of these factors, particularly the balancing nature of specific interactions formed by antibodies with the epitope residues remain scarcely characterized. In this study, we performed molecular dynamics simulations, ensemble-based deep mutational scanning of SARS-CoV-2 spike residues and binding free energy computations for two distinct groups of broadly neutralizing antibodies : E1 group (BD55-3152, BD55-3546 and BD5-5840) and F3 group (BD55-3372, BD55-4637 and BD55-5514).
View Article and Find Full Text PDFBeta-propeller Protein Associated Neurodegeneration (BPAN) is a devastating neurodevelopmental and neurodegenerative disease linked to variants in . Currently, there is no cure or disease altering treatment for this disease. This is, in part, due to a lack of insight into early phenotypes of BPAN progression and 's role in establishing and maintaining neurological function.
View Article and Find Full Text PDFAs the toolbox of base editors (BEs) expands, selecting appropriate BE and guide RNA (gRNA) to achieve optimal editing efficiency and outcome for a given target becomes challenging. Here, we construct a set of 10 adenine and cytosine BEs with high activity and broad targeting scope, and comprehensively evaluate their editing profiles and properties head-to-head with 34,040 BE-gRNA-target combinations using genomically integrated long targets and tiling gRNA strategies. Interestingly, we observe widespread non-canonical protospacer adjacent motifs (PAMs) for these BEs.
View Article and Find Full Text PDFPathogen sequencing is an important tool for disease surveillance and demonstrated its high value during the COVID-19 pandemic. Viral sequencing during the pandemic allowed us to track disease spread, quickly identify new variants, and guide the development of vaccines. Tiled amplicon sequencing, in which a panel of primers is used for multiplex amplification of fragments across an entire genome, was the cornerstone of SARS-CoV-2 sequencing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!