The binding of Hoechst 33258 with DNA at various ionic strengths of solution and different ligand concentrations has been investigated. Existence of more than one type of interactions of Hoechst 33258 with DNA has been revealed, which were very sensitive to the ionic strength. Hoechst 33258 doesn't show specificity to AT sequences of DNA at low ionic strength. High affinity binding mode becomes obvious at high ionic strength. The values of binding constants and binding site sizes for revealed strong and weak interactions have been determined.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2008.10507210 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China.
Deep eutectic solvent (DES)-based conductive hydrogels have attracted great interest in the building of flexible electronic devices that can be used to replace conventional temperature-intolerant hydrogels and expensive ionic liquid gels. However, current DES-based conductive hydrogels obtained have limited mechanical strength, high hysteresis, and poor microdeformation sensitivity of the assembled sensors. In this work, a rubber-like conductive hydrogel based on -acryloylglycinamide (NAGA) and DES (acetylcholine chloride/acrylamide) has been synthesized by a one-step method.
View Article and Find Full Text PDFFood Res Int
February 2025
School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; Quanzhou Marine Biotechnology Industry Research Institute, Quanzhou 362700, China. Electronic address:
The purpose of this study was to investigate the mechanism of enhancing gelling properties of low-salt surimi by utilizing the complementary advantages of L-arginine (L-Arg) and microwave (MW) from the perspective of gels' network characteristics. At MW 3 min, the diameters of protein filaments were increased from 0.015 μm to 0.
View Article and Find Full Text PDFBackground: This study aimed to identify distinct trajectories of serum osmolality within the first 72 h for patients with sepsis-associated encephalopathy (SAE) in the MIMIC-IV and eICU-CRD databases and assess their impact on mortality and adverse clinical outcomes.
Methods: In this retrospective cohort study, patients with SAE from the MIMIC-IV database were included. Group-based trajectory modeling (GBTM) was used to categorize distinct patterns of serum osmolality changes over 72 h in ICU patients.
Environ Monit Assess
January 2025
Department of Botany, Bacha Khan University, Charsadda, Charsadda, 24420, Khyber Pakhtunkhwa, Pakistan.
Wastewater is commonly contaminated with many pharmaceutical pollutants, so an efficient purification method is required for their removal from wastewater. In this regard, an innovative tertiary Se/SnO@CMC/Fe-GA nanocomposite was synthesized through encapsulation of metal organic frameworks (Fe-glutaric acid) onto Se/SnO-embedded-sodium carboxy methyl cellulose matrix to thoroughly evaluate its effectiveness for adsorption of levofloxacin drug from wastewater. The prepared Se/SnO@CMC/Fe-GA nanocomposite was analyzed via UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), energy dispersive X-ray (EDX), and X-ray diffraction (XRD) to valuate optical property, size, morphology, thermal stability, and chemical composition.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, 800 Dongchuan Road, 200240, Shanghai, CHINA.
Ionogels have attracted considerable attention as versatile materials due to their unique ionic conductivity and thermal stability. However, relatively weak mechanical performance of many existing ionogels has hindered their broader application. Herein, we develop robust, tough, and impact-resistant mechanically interlocked network ionogels (IGMINs) by incorporating ion liquids with mechanical bonds that can dissipate energy while maintain structural stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!