Modeling the resting state of oxalate oxidase and oxalate decarboxylase enzymes.

Inorg Chem

Willard H. Dow Laboratories, Department of Chemistry, University of Michigan, 930 North University, Ann Arbor, MI 48109, USA.

Published: May 2008

In view of the biological and commercial interest in models for Oxalate Decarboxylases (OxDC) and Oxalate Oxidases (OxOx), we have synthesized and characterized three new Mn (II) complexes ( 1- 3) employing N3O-donor amino-carboxylate ligands (TCMA, 1,4,7-triazacyclononane- N-acetic acid; K (i) Pr 2TCMA, potassium 1,4-diisopropyl-1,4,7-triazacyclononane- N-acetate; and KBPZG, potassium N,N-bis(3,5-dimethylpyrazolyl methyl)glycinate). These complexes were characterized by several techniques including X-ray crystallographic analysis, X-band electron paramagnetic resonance (EPR), electrospray ionization mass spectrometry (ESI-MS), and cyclic voltammetry. The crystal structures of 1 and 3 revealed that both form infinite polymeric chains of Mn (II) complexes linked by the pendant carboxylate arms of the TCMA (-) and the BPZG (-) ligands in a syn-antipattern. Complex 2 crystallizes as a mononuclear Mn (II) cation, six-coordinate in a distorted octahedral geometry. Although complexes 1 and 3 crystallize as polymeric chains, all compounds present the same N3O-donor set atoms around the metal center as observed in the crystallographically characterized OxDC and OxOx. Moreover, complex 2 also contains two water molecules coordinated to the Mn center as observed in the active site of OxDC and OxOx. ESI-MS spectrometry, combined with EPR, were useful techniques to establish that complexes 1- 3 are present as mononuclear Mn (II) species in solution. Finally, complexes 1- 3 are able to model the resting state active sites, with special attention focused on complex 2 which provides the first exact first coordination sphere ligand structural model for the resting states of both OxDC and OxOx.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic701953gDOI Listing

Publication Analysis

Top Keywords

oxdc oxox
12
resting state
8
polymeric chains
8
center observed
8
model resting
8
complexes
6
modeling resting
4
oxalate
4
state oxalate
4
oxalate oxidase
4

Similar Publications

Remarkably few enzymes are known to employ a mononuclear manganese ion that undergoes changes in redox state during catalysis. Many questions remain to be answered about the role of substrate binding and/or protein environment in modulating the redox properties of enzyme-bound Mn(II), the nature of the dioxygen species involved in the catalytic mechanism, and how these enzymes acquire Mn(II) given that many other metal ions in the cell form more stable protein complexes. Here, we summarize current knowledge concerning the structure and mechanism of five mononuclear manganese-dependent enzymes: superoxide dismutase, oxalate oxidase (OxOx), oxalate decarboxylase (OxDC), homoprotocatechuate 3,4-dioxygenase, and lipoxygenase (LOX).

View Article and Find Full Text PDF

In humans oxalate is end product of protein metabolism, with no enzyme present to act on it. In conditions of its enhanced endogenous synthesis or increased absorption from the diet, oxalate accumulation leads to hyperoxaluria which can further lead to a number of pathological conditions including urolithiasis. Urolithiasis has been a perplexing problem due to its high incidence and rate of recurrence after treatment like Extracorporeal-shock wave lithotripsy (ESWL).

View Article and Find Full Text PDF

Modeling the resting state of oxalate oxidase and oxalate decarboxylase enzymes.

Inorg Chem

May 2008

Willard H. Dow Laboratories, Department of Chemistry, University of Michigan, 930 North University, Ann Arbor, MI 48109, USA.

In view of the biological and commercial interest in models for Oxalate Decarboxylases (OxDC) and Oxalate Oxidases (OxOx), we have synthesized and characterized three new Mn (II) complexes ( 1- 3) employing N3O-donor amino-carboxylate ligands (TCMA, 1,4,7-triazacyclononane- N-acetic acid; K (i) Pr 2TCMA, potassium 1,4-diisopropyl-1,4,7-triazacyclononane- N-acetate; and KBPZG, potassium N,N-bis(3,5-dimethylpyrazolyl methyl)glycinate). These complexes were characterized by several techniques including X-ray crystallographic analysis, X-band electron paramagnetic resonance (EPR), electrospray ionization mass spectrometry (ESI-MS), and cyclic voltammetry. The crystal structures of 1 and 3 revealed that both form infinite polymeric chains of Mn (II) complexes linked by the pendant carboxylate arms of the TCMA (-) and the BPZG (-) ligands in a syn-antipattern.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!