Valproic acid as a therapeutic agent for head and neck squamous cell carcinomas.

Cancer Chemother Pharmacol

Epithelial Pathobiology Group, Cancer Biology Programme, Diamantina Institute for Cancer, Immunology and Metabolic Medicine, University of Queensland, Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia.

Published: February 2009

Purposes: Here we investigate if valproic acid (VA) can enhance the efficacy of commonly used therapies for head and neck squamous cell carcinomas (HNSCC) and the molecular mechanisms that may be related to its anticancer effects.

Methods: Proliferation and viability of distinct cell types subjected to VA treatment alone or in combination regimens were measured through BrdU incorporation and LDH release, respectively. Molecular markers compatible with histone deacetylase inhibitory activity of VA were assessed through western blots assays in lysates obtained from cultured cells and tumour biopsies.

Results: Treatment of all cell types with VA resulted in a dose-dependent increase in histone H3 acetylation and p21 expression, as well as dose-dependent cytostasis. In contrast, the cytotoxic response to VA was variable and did not correlate with cytostasis, histone acetylation or p21 induction. The variability in response to VA was also observed in tumour biopsy samples collected from patients prior to and following a 1 week oral course of VA. In addition, we found that a combination of a clinically achievable concentration of VA plus cisplatin caused a threefold to sevenfold increase in cisplatin cytotoxicity in vitro.

Conclusions: VA acts as a histone deacetylase inhibitor (HDI) in SCC cells and normal human keratinocytes (HKs), potentiates the cytotoxic effect of cisplatin in SCC cell lines and decreases the viability of SCC cells as opposed to HKs. Taken together, the results provide initial evidence that VA might be a valuable drug in the development of better therapeutic regimens for HNSCC.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00280-008-0747-1DOI Listing

Publication Analysis

Top Keywords

valproic acid
8
head neck
8
neck squamous
8
squamous cell
8
cell carcinomas
8
cell types
8
histone deacetylase
8
histone acetylation
8
acetylation p21
8
scc cells
8

Similar Publications

Herein, we present a case of idiopathic generalized epilepsy (IGE) manifesting as de novo late-onset absence status epilepticus (ASE) following mild coronavirus disease 2019 (COVID-19). A woman in her 40s presented with persistent 3-5.5 Hz generalized spike-wave complexes (SWCs) on electroencephalography (EEG).

View Article and Find Full Text PDF

Exposure to valproic acid (VPA) during embryogenesis has become a valuable tool for modeling neurodevelopmental disorders in animal models such as zebrafish (). This article examines the effects of embryonic exposure to VPA in zebrafish on the basis of 39 articles sourced from PubMed and Google Scholar. We conducted a systematic review and meta-analysis to elucidate the common impacts of VPA exposure and reported that VPA significantly altered development at various levels.

View Article and Find Full Text PDF

Background: Recent guidance from UK health authorities strongly cautions against the use of valproic acid (VPA) in persons under 55 because of reevaluated risk of teratogenicity.

Objective: To summarize the extant literature documenting VPA-associated anatomical, behavioral, and cognitive teratogenicity.

Method: Pubmed, Medline, Cochrane Library, PsychInfo, Embase, Scopus, Web of Science, and Google Scholar were searched in accordance with PRISMA guidelines.

View Article and Find Full Text PDF

Sodium valproate- a salt of valproic acid (VPA), is an anticonvulsant used in the treatment of epilepsy and a range of psychiatric conditions that include panic attacks, anxiety, post-traumatic stress, migraine and bipolar disorder etc. VPA can cause direct damage to many tissues due to accumulation of toxic metabolites. Nowadays, phytochemicals are amongst the best options for the treatment of diseases.

View Article and Find Full Text PDF

Unlabelled: Valproic acid (VPA) demonstrates teratogenic effects during pregnancy. Prenatal exposure to VPA may result in autism spectrum disorder (ASD) -like phenotypes. Apigenin, a natural flavonoid, has been shown to have neuroprotective impacts due to its antioxidant properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!