The Wnt/beta-catenin signaling pathway is essential for normal skeletal development because conditional gain or loss of function of beta-catenin in cartilage results in embryonic or early postnatal death. To address the role of beta-catenin in postnatal skeletal growth and development, Col2a1-ICAT transgenic mice were generated. Mice were viable and had normal size at birth, but became progressively runted. Transgene expression was limited to the chondrocytes in the growth plate and articular cartilages and was associated with decreased beta-catenin signaling. Col2a1-ICAT transgenic mice showed reduced chondrocyte proliferation and differentiation, and an increase in chondrocyte apoptosis, leading to decreased widths of the proliferating and hypertrophic zones, delayed formation of the secondary ossification center, and reduced skeletal growth. Isolated primary Col2a1-ICAT transgenic chondrocytes showed reduced expression of chondrocyte genes associated with maturation, and demonstrated that VEGF gene expression requires cooperative interactions between BMP2 and beta-catenin signaling. Altogether the findings confirm a crucial role for Wnt/beta-catenin in postnatal growth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2636704PMC
http://dx.doi.org/10.1242/jcs.020362DOI Listing

Publication Analysis

Top Keywords

beta-catenin signaling
12
col2a1-icat transgenic
12
skeletal growth
8
transgenic mice
8
inhibition beta-catenin
4
signaling
4
signaling defects
4
postnatal
4
defects postnatal
4
postnatal cartilage
4

Similar Publications

Novel Hsp90α inhibitor inhibits HSV-1 infection by suppressing the Akt/β-catenin pathway.

Int J Antimicrob Agents

January 2025

School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China. Electronic address:

The prevalence of herpes simplex virus type 1 (HSV-1) infection and the emergence of drug-resistant HSV-1 strains posts a significant global health challenge, necessitating the urgent development of effective anti-HSV-1 drugs. As one of the most prevalent molecular chaperones, heat shock protein 90 α (Hsp90α) has been extensively demonstrated to regulate a range of viral infections, thus representing a promising antiviral target. In this study, we identified JD-13 as a novel Hsp90α inhibitor and explored its capability in inhibiting HSV-1 infection.

View Article and Find Full Text PDF

Introduction: Resistance to lenvatinib limits the effectiveness of the targeted treatments for HCC. However, the exact mechanism behind this resistance remains elusive. Current research suggests that circular RNA (circRNA) is pivotal in mediating drug resistance during targeted treatments.

View Article and Find Full Text PDF

The Role of NF-κB/MIR155HG in Regulating the Stemness and Radioresistance in Breast Cancer Stem Cells.

Front Biosci (Landmark Ed)

January 2025

Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.

Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.

View Article and Find Full Text PDF

Cancer stem cells (CSC) are known to be the main source of tumor relapse, metastasis, or multidrug resistance and the mechanisms to counteract or eradicate them and their activity remain elusive. There are different hypotheses that claim that the origin of CSC might be in regular stem cells (SC) and, due to accumulation of mutations, these normal cells become malignant, or the source of CSC might be in any malignant cell that, under certain environmental circumstances, acquires all the qualities to become CSC. Multiple studies indicate that lifestyle and diet might represent a source of wellbeing that can prevent and ameliorate the malignant phenotype of CSC.

View Article and Find Full Text PDF

We previously reported that mediated the improvement in body composition in testosterone (T)-treated hypogonadal men by shifting adipogenesis to myogenesis. Previous preclinical studies suggest that regulates , an important osteoblastic transcription factor, expression and activity. However, the changes in , and other genes/proteins involved in osteoblastogenesis with T therapy in hypogonadal men are unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!