Beta-fructofuranosidase genes of the silkworm, Bombyx mori: insights into enzymatic adaptation of B. mori to toxic alkaloids in mulberry latex.

J Biol Chem

Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, Japan.

Published: May 2008

Mulberry latex contains extremely high concentrations of alkaloidal sugar mimic glycosidase inhibitors, such as 1,4-dideoxy-1,4-imino-D-arabinitol (D-AB1) and 1-deoxynojirimycin (DNJ). Although these compounds do not harm the silkworm, Bombyx mori, a mulberry specialist, they are highly toxic to insects that do not normally feed on mulberry leaves. D-AB1 and DNJ are strong inhibitors of alpha-glucosidases (EC 3.2.1.20); however, they do not affect the activity of beta-fructofuranosidases (EC 3.2.1.26). Although alpha-glucosidase genes are found in a wide range of organisms, beta-fructofuranosidase genes have not been identified in any animals so far. In this study, we report the identification and characterization of beta-fructofuranosidase genes (BmSuc1 and BmSuc2) from B. mori. The BmSuc1 gene was highly expressed in the midgut and silk gland, whereas the expression of BmSuc2 gene was not detected. BmSuc1 encodes a functional beta-fructofuranosidase, whose enzymatic activity was not inhibited by DNJ or D-AB1. We also showed that BmSUC1 protein localized within the midgut goblet cell cavities. Collectively, our data clearly demonstrated that BmSuc1 serves as a sugar-digesting enzyme in the silkworm physiology. This anomalous presence of the beta-fructofuranosidase gene in the B. mori genome may partly explain why the silkworm can circumvent the mulberry's defense system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3258877PMC
http://dx.doi.org/10.1074/jbc.M709350200DOI Listing

Publication Analysis

Top Keywords

beta-fructofuranosidase genes
12
silkworm bombyx
8
bombyx mori
8
mulberry latex
8
beta-fructofuranosidase
5
mori
5
bmsuc1
5
silkworm
4
genes silkworm
4
mori insights
4

Similar Publications

Pruning is a common forest-tending method; its purpose is to promote growth and improve the overall stand quality. Poplar is a fast-growing, broad-leaved tree species with high ecological and economic value. It is a common management method to promote its growth by pruning and adjusting the spatial structure of the stand, but its potential regulatory mechanism remains unclear.

View Article and Find Full Text PDF

This study investigates the impact of β-fructofuranosidase (Bmsuc1) on the development of the silk gland in silkworms (Bombyx mori). Previous research shows that Bmsuc1 is highly expressed in the silk glands and may be involved in silk gland development and protein synthesis. However, the precise mechanism by which Bmsuc1 regulates silk gland development remains unclear.

View Article and Find Full Text PDF

Degradation mechanism of difructose dianhydride III in Blautia species.

Appl Microbiol Biotechnol

November 2024

Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan.

Di-fructofuranose 1,2':2,3' dianhydride (DFA-III) is a cyclic fructo-disaccharide, which is produced by the condensation of two fructose molecules via the caramelization or enzymatic reaction of inulin fructotransferase. A strain of Blautia producta was known to utilize DFA-III as a carbohydrate source; however, the mechanisms remain unclear. In this study, we characterized the glycoside hydrolase (GH) family 91 DFA-III hydrolase (DFA-IIIase) from B.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi alter carbon metabolism and invertase genes expressions of Populus simonii × P. nigra under drought stress.

Physiol Plant

October 2024

State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China.

Arbuscular mycorrhizal fungi (AMF) play a crucial role in regulating the allocation of carbon between source and sink tissues in plants and in regulating their stress responses by changing the sucrose biosynthesis, transportation, and catabolism in plants. Invertase, a key enzyme for plant development, participates in the response of plants to drought stress by regulating sucrose metabolism. However, the detailed mechanisms by which INV genes respond to drought stress in mycorrhizal plants remain unclear.

View Article and Find Full Text PDF

Garlic bulbs generally possess several swelling cloves, and the swelling degree of the bulbs determines its yield and appearance quality. However, the genetic basis underlying bulb traits remains poorly known. To address this issue, we performed a genome-wide association analysis for three bulb traits: bulb weight, diameter, and height.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!