A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Regulatory signals for endothelial podosome formation. | LitMetric

Podosomes are punctate actin-rich adhesion structures which spontaneously form in cells of the myelomonocytic lineage. Their formation is dependent on Src and RhoGTPases. Recently, podosomes have also been described in vascular cells. These podosomes differ from the former by the fact that they are inducible. In endothelial cells, such a signal can be provided by either constitutively active Cdc42, the PKC activator PMA or TGFbeta, depending on the model. Consequently, other regulatory pathways have been reported to contribute to podosome formation. To get more insight into the mechanisms by which podosomes form in endothelial cells, we have explored the respective contribution of signal transducers such as Cdc42-related GTPases, Smads and PKCs in three endothelial cell models. Results presented demonstrate that, in addition to Cdc42, TC10 and TCL GTPases can also promote podosome formation in endothelial cells. We also show that PKCalpha can be either necessary or entirely dispensable, depending on the cell model. In contrast, PKCdelta is essential for podosome formation in endothelial cells but not smooth muscle cells. Finally, although podosomes vary very little in their molecular composition, the signalling pathways involved in their assembly appear very diverse.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejcb.2008.02.006DOI Listing

Publication Analysis

Top Keywords

podosome formation
16
endothelial cells
16
formation endothelial
8
cells
7
endothelial
6
formation
5
podosomes
5
regulatory signals
4
signals endothelial
4
podosome
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!