Fitting protein-folding free energy landscape for a certain conformation to an NK fitness landscape.

J Theor Biol

Rational Evolutionary Design of Advanced Biomolecules (REDS) Group/JST, Saitama Small Enterprise Promotion Corporation SKIP City, Kawaguchi 333-0844, Japan.

Published: July 2008

The NK fitness landscape is a mathematical landscape model with a parameter k that governs the degree of ruggedness of the landscape. We presented a procedure to fit a given landscape to the NK fitness landscape by introducing the "apparent k-value"k(app). In this paper, we defined the protein free energy (DeltaG) landscape in amino acid sequence space, where DeltaG is the folding free energy from a random coil to a "certain conformation". Applying this landscape to our fitting procedure, we examined the statistical properties of the landscape. For calculation of a conformation energy, amino acid residues are represented by points, and interaction energies among amino acid residues are given as (1+K)-body interactions, that is, an unit of interacting (1+K) residues cooperatively contribute a single energy value to the conformational energy. Our results suggest that the apparent k-value of the free energy landscape is k(app) approximately K, and that the number of possible interactions among residues is unrelated to the k(app) value. This leads to the inference that k(app) takes values about 1-3 in real landscapes, if nature adopts two-body approximately four-body interaction energies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2008.02.034DOI Listing

Publication Analysis

Top Keywords

free energy
16
fitness landscape
12
amino acid
12
landscape
11
energy landscape
8
landscape fitness
8
acid residues
8
interaction energies
8
energy
7
fitting protein-folding
4

Similar Publications

Correlated spin-wave generation and domain-wall oscillation in a topologically textured magnetic film.

Nat Mater

January 2025

Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA.

Spin waves, or magnons, are essential for next-generation energy-efficient spintronics and magnonics. Yet, visualizing spin-wave dynamics at nanoscale and microwave frequencies remains a formidable challenge due to the lack of spin-sensitive, time-resolved microscopy. Here we report a breakthrough in imaging dipole-exchange spin waves in a ferromagnetic film owing to the development of laser-free ultrafast Lorentz electron microscopy, which is equipped with a microwave-mediated electron pulser for high spatiotemporal resolution.

View Article and Find Full Text PDF

Background-free luminescent and chromatic assay for strong visual detection of creatinine.

Talanta

January 2025

Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China. Electronic address:

Creatinine is an essential biomarker for the clinical diagnosis and treatment of renal insufficiency. Although fluorescent methods are powerful tools for creatinine detection, almost all reported fluorescent probes rely on short-wavelength excitation and a single fluorescent signal, making them susceptible to environmental and operational conditions. In this study, a near-infrared excited, highly sensitive, and multi-output signal sensing system was established using upconversion nanoparticles and 3,5-dinitrobenzoic acid (DNBA) for synergistic luminescent and colorimetric assay for strong visual detection of creatinine.

View Article and Find Full Text PDF

The biodiversity of ice-free Antarctica database.

Ecology

January 2025

Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia.

Antarctica is one of Earth's most untouched, inhospitable, and poorly known regions. Although knowledge of its biodiversity has increased over recent decades, a diverse, wide-ranging, and spatially explicit compilation of the biodiversity that inhabits Antarctica's permanently ice-free areas is unavailable. This absence hinders both Antarctic biodiversity research and the integration of Antarctica in global biodiversity-related studies.

View Article and Find Full Text PDF

The development of high-brightness electron sources is critical to state-of-the-art electron accelerator applications like X-ray free electron laser (XFEL) and ultra-fast electron microscopy. Cesium telluride is chosen as the electron source material for multiple cutting-edge XFEL facilities worldwide. This manuscript presents the first demonstration of the growth of highly crystalized and epitaxial cesium telluride thin films on 4H-SiC and graphene/4H-SiC substrates with ultrasmooth film surfaces.

View Article and Find Full Text PDF

Adaptive Phase Change Microcapsules for Efficient Sustainable Cooling.

ACS Appl Mater Interfaces

January 2025

School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China.

Passive radiative cooling has recently gained significant attention as a highly promising technology that offers a zero-energy and electricity-free solution to tackle the pressing issue of global warming. Nevertheless, research efforts have predominantly focused on enhancing daytime and hot-day radiative cooling efficacy, often neglecting the potential downsides associated with excessive cooling and the consequent increased heating expenses during cold nights and winter days. Herein, we demonstrate a micro-nanostructured engineered composite film that synergistically integrates room-temperature adaptive silica-shell/oil-core phase change microcapsules (S-PCMs) with commercially available cellulose fibers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!