We constructed a set of recombinant Saccharomyces cerevisiae strains with xylose-fermenting ability. A recombinant S. cerevisiae strain D-XR/ARSdR/XK, in which protein engineered NADP(+)-dependent XDH was expressed, showed 40% increased ethanol production and 23% decrease in xylitol excretion as compared with the reference strain D-XR/XDH/XK expressing the wild-type XDH.

Download full-text PDF

Source
http://dx.doi.org/10.1263/jbb.105.296DOI Listing

Publication Analysis

Top Keywords

recombinant saccharomyces
8
saccharomyces cerevisiae
8
bioethanol production
4
production xylose
4
xylose recombinant
4
cerevisiae expressing
4
expressing xylose
4
xylose reductase
4
reductase nadp+-dependent
4
nadp+-dependent xylitol
4

Similar Publications

Horizontal transposon transfer (HTT) plays an important role in the evolution of eukaryotic genomes, however the detailed evolutionary history and impact of most HTT events remain to be elucidated. To better understand the process of HTT in closely related microbial eukaryotes, we studied Ty4 retrotransposon subfamily content and sequence evolution across the genus Saccharomyces using short- and long-read whole genome sequence data, including new PacBio genome assemblies for two S. mikatae strains.

View Article and Find Full Text PDF

The murine hepatitis virus (MHV) is an important model system for studying coronavirus (CoV) molecular and cell biology. Despite this, few reagents for MHV are available through repositories such as ATCC or Addgene, potentially limiting the widespread adoption of MHV as a tractable model system. To overcome some challenges inherent in the existing MHV reverse genetics systems, we developed a plasmid-launched transformation-associated recombination (TAR) cloning-based system to assemble the MHV (strain A59; MHV-A59) genome.

View Article and Find Full Text PDF

Heterologous Expression of the Antiviral Lectin Griffithsin in Probiotic and In Vitro Characterization of Its Properties.

Microorganisms

November 2024

Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.

In this study, the probiotic yeast was engineered to secrete the antiviral lectin griffithsin. Twelve genetic tools with the griffithsin gene were cloned into the vector pSF-TEF1-URA3 and introduced into . In the recombinant strains, a 16.

View Article and Find Full Text PDF

Optimizing Yeast Homologous Recombination for Splicing Large Coronavirus Genome Fragments.

Int J Mol Sci

December 2024

Academy of Military Medical Sciences, Beijing 100850, China.

Reverse genetics is a useful tool for studying viruses and developing vaccines for coronaviruses. However, constructing and manipulating the coronavirus genome in can be time-consuming and challenging due to its large size and instability. Homologous recombination, a genetic manipulation mechanism found in organisms, is essential for DNA repair, gene recombination, and genetic engineering.

View Article and Find Full Text PDF

Integrative Transcriptomic and Target Metabolite Analysis as a New Tool for Designing Metabolic Engineering in Yeast.

Biomolecules

November 2024

Centre for Omic Sciences, Eurecat, Centre Tecnològic de Catalunya, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain.

Precision fermentation processes, especially when using edited microorganisms, demand accuracy in the bioengineering process to maximize the desired outcome and to avoid adverse effects. The selection of target sites to edit using CRISPR/Cas9 can be complex, resulting in non-controlled consequences. Therefore, the use of multi-omics strategies can help in the design, selection and efficiency of genetic editing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!