The detailed properties of the enzyme from Pseudomonas aeruginosa, which catalyzes the N-acyl linkage between myristic acid and the N-terminal glycine residue of the octapeptide GNAAAARR-NH(2) (PKA) in aqueous solution without ATP and CoA, were studied. The substrate specificity for the acyl peptide in the synthetic reaction was examined, and it was found that at least eight amino acid residues are required for the reaction and that the N-terminal glycine residue is not absolutely essential for the reaction because the activity was detected using the octapeptide that has an N-terminal alanine. The activity was also strongly affected by the amino acid sequence because the activity was very weak in the reaction using GARASVLS-NH(2) (HIV-1p17(gag)). The substrate specificity for fatty acids was also examined. In the reactions using lauric acid and decanoic acid, only slight activities were detected; however, those activities were very small compared with the activity in the reaction using myristic acid. In addition, the degradation of myristoyl PKA by the enzyme was detected, although there are only a few reports on demyristoylation. The optimum pH and temperature of the degradation reaction were consistent with those of the synthetic reaction. The degradation reaction was inhibited by divalent cations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1263/jbb.105.282 | DOI Listing |
Chemistry
January 2025
Xi'an Jiaotong University, School of Chemistry, No.28, West Xianning Road, 710049, Xi'an, CHINA.
Due to the diverse chemical and physical properties of functional groups, mild and controllable ligation methods are often required to construct complex drugs and functional materials. To make diverse sets of products with tunable physicochemical properties, it is also useful to employ complimentary ligation methods that adopt the same starting materials. Here, we disclose the efficient and modular synthesis of amides or thioamides through the chemical ligation of acyl silanes with amines, simply by turning a light on or off.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
January 2025
Biochemistry and Molecular Biology Department, Center for Pharmaceutical Research and Development, Ave. 26 # 1605, Nuevo Vedado, Ciudad de La Habana, 10400, Cuba. Electronic address:
Acylation is a common method used to modify antimicrobial peptides to enhance their effectiveness. It increases the interactions between the peptide and the bacterial cell membranes. However, acylation can also reduce the selectivity of the peptides by making them more active on eukaryotic membranes, which can lead to unintended toxicity.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of California, San Diego, Chemistry and Biochemistry, 9500 Gilman Drive, Urey Hall 4120, 92093, La Jolla, UNITED STATES OF AMERICA.
Membrane-forming phospholipids are generated in cells by enzymatic diacylation of non-amphiphilic polar head groups. Analogous non-enzymatic processes may have been relevant at the origin of life and could have practical utility in membrane synthesis. However, aqueous head group diacylation is challenging in the absence of enzymes.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
Bacterial membrane vesicles (BMVs) are emerging as powerful natural nanoparticles with transformative potential in medicine and industry. Despite their promise, scaling up BMV production and ensuring stable isolation and storage remain formidable challenges that limit their broader application. Inspired by eukaryotic mechanisms of membrane curvature, we engineered DH5α to serve as a high-efficiency BMV factory.
View Article and Find Full Text PDFZhejiang Da Xue Xue Bao Yi Xue Ban
December 2024
Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!