In Arabidopsis, the tapetum plays important roles in anther development by providing enzymes for callose dissolution and materials for pollen-wall formation, and by supplying nutrients for pollen development. Here, we report the identification and characterization of a male-sterile mutant, defective in tapetal development and function 1 (tdf1), that exhibits irregular division and dysfunction of the tapetum. The TDF1 gene was characterized using a map-based cloning strategy, and was confirmed by genetic complementation. It encodes a putative R2R3 MYB transcription factor, and is highly expressed in the tapetum, meiocytes and microspores during anther development. Callose staining and gene expression analysis suggested that TDF1 may be a key component in controlling callose dissolution. Semi-quantitative and quantitative RT-PCR analysis showed that TDF1 acts downstream of DYT1 and upstream of AMS and AtMYB103 in the transcriptional regulatory networks that regulate tapetal development. In conclusion, our results show that TDF1 plays a vital role in tapetal differentiation and function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-313X.2008.03500.x | DOI Listing |
Int J Biol Macromol
December 2024
National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China. Electronic address:
The ABORTED MICROSPORES (AMS) gene is crucial for tapetal cell development and pollen formation, but its role in Upland cotton (Gossypium hirsutum) has not been previously documented. This study identified GhAMS11 as a key transcription factor, with its high expression specifically observed during the S4-S6 stages of anther development, a critical period for tapetal activity and pollen formation. Subcellular localization confirmed that GhAMS11 was located in the nucleus.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (JAAS), Changchun, China.
Alfalfa ( L.), a prominent perennial forage in the legume family, is widely cultivated across Europe and America. Given its substantial economic value for livestock, breeding efforts have focused on developing high-yield and high-quality varieties since the discovery of CMS lines.
View Article and Find Full Text PDFNat Commun
December 2024
Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
Lipid metabolism is critical for male reproduction in plants. Many lipid-metabolic genic male-sterility (GMS) genes function in the anther tapetal endoplasmic reticulum, while little is known about GMS genes involved in de novo fatty acid biosynthesis in the anther tapetal plastid. In this study, we identify a maize male-sterile mutant, enr1, with early tapetal degradation, defective anther cuticle, and pollen exine.
View Article and Find Full Text PDFPlant Biotechnol J
November 2024
Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India.
Male sterility is an important agronomical trait in self-pollinating plants for producing cost-effective F1 hybrids to harness the heterosis. Still, large-scale development and maintenance of male sterile lines and restoring fertility in F1 hybrids pose significant challenges in plant hybrid breeding. Cotton is a self-pollinating crop and exhibits strong hybrid vigor.
View Article and Find Full Text PDFDev Biol
February 2025
Department of Biology, Stanford University, Stanford, CA, 94305, USA. Electronic address:
The anther is the developmental housing of pollen and therefore the male gametes of flowering plants. The meiotic cells from which pollen are derived must differentiate de novo from somatic anther cells and synchronously develop with the rest of the anther. Anthropogenic control over another development has become crucial for global agriculture so as to maintain inbred lines and generate hybrid seeds of many crops.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!