The interaction between multiple myeloma (MM) cells and the bone marrow (BM) microenvironment induces proliferation and survival of MM cells, as well as osteoclastogenesis. This study investigated the therapeutic potential of novel p38 mitogen-activated protein kinase (p38MAPK) inhibitor LY2228820 (LY) in MM. Although cytotoxicity against MM cell lines was modest, LY significantly enhanced the toxicity of bortezomib by down-regulating bortezomib-induced heat shock protein 27 phosphorylation. LY inhibited interleukin-6 secretion from long term cultured-BM stromal cells and BM mononuclear cells (BMMNCs) derived from MM patients in remission. LY also inhibited macrophage inflammatory protein-1alpha secretion from patient MM cells and BMMNCs as well as normal CD14 positive osteoclast precursor cells. Moreover, LY significantly inhibited in vitro osteoclastogenesis from CD14 positive cells induced by macrophage-colony stimulating factor and soluble receptor activator of nuclear factor-kappaB ligand. Finally, LY also inhibited in vivo osteoclatogenesis in a severe combined immunodeficiency mouse model of human MM. These results suggest that LY represents a promising novel targeted approach to improve MM patient outcome both by enhancing the effect of bortezomib and by reducing osteoskeletal events.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2141.2008.07044.x | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States.
Purpose: Sulfur mustard gas (SM) exposure to eyes causes multiple corneal injuries including stromal cell loss in vivo. However, mechanisms mediating stromal cell loss/death remains elusive. This study sought to test the novel hypothesis that SM-induced toxicity to human corneal stromal fibroblasts involves ferroptosis mechanism via p38 MAPK signaling.
View Article and Find Full Text PDFViral Immunol
January 2025
Department of Microbiology, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes, Mexico.
Respiratory syncytial virus (RSV) is one of the most important etiologies of acute respiratory infections that cause bronchiolitis in children under 5 years of age. Treatments are expensive, no vaccine is available, and this is an important cause of hospitalization. Costimulatory molecules have been reported to be good inducers of antiviral type 1 immune response.
View Article and Find Full Text PDFClin Exp Pharmacol Physiol
March 2025
Department of Dermatology, Fudan University Huashan Hospital, Shanghai, China.
BRAF inhibitors (BRAFi) represent a cornerstone in melanoma therapy due to their high efficacy. However, the emergence of resistance causes a significant challenge to their clinical utility. This study aims to investigate the potential of diclofenac as a sensitizer for BRAFi therapy in melanoma and to elucidate its underlying mechanism.
View Article and Find Full Text PDFCell Commun Signal
January 2025
School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
Background: Staphylococcus aureus, a known contributor to non-healing wounds, releases vesicles (SAVs) that influence the delicate balance of host-pathogen interactions. Efferocytosis, a process by which macrophages clear apoptotic cells, plays a key role in successful wound healing. However, the precise impact of SAVs on wound repair and efferocytosis remains unknown.
View Article and Find Full Text PDFDNA Cell Biol
January 2025
Department of Orthopaedics, The Third People's Hospital of Hubei Province, Wuhan, China.
Exosome-delivered circular RNAs (circRNAs) are recognized as a key mechanism that regulates osteosarcoma (OS) progression. The purpose of this study is to discover the role of a novel circRNA hsa_circ_0000116 from exosomes in OS progression. Transmission electron microscopy, nanoparticle tracking analysis, and western blotting were used to identify the exosomes isolated from two OS cell lines (HOS and MG-63).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!