Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Riverine biofilms remain one of the least-studied habitats despite the significant increase in the examination of aquatic microbial communities in recent years. In this study, the dynamics of epilithic biofilm communities native on rocks from a low-order upland stream were examined over a period of 3 years. Spatial and temporal variations in bacterial communities were assessed using terminal restriction fragment length polymorphism, based on analysis of the 16S rRNA gene. In total, 108 epilithic biofilm samples were analysed and 170 different ribotypes were detected. A strong temporal gradient in ribotype composition was noticed, especially between samples collected in 2001 and those collected in 2002 and 2003, most likely reflecting interannual differences in weather conditions, such as temperature. A spatial gradient in ribotype composition, from upstream sites to the low-lying sites, was also evident and interpreted as an environmental variation gradient along the river course. Distinct biofilm communities consistently occurred at the first site along the river, which was significantly correlated to low pH. Temporal factors explained the highest degree of variation within the epilithic biofilms. Recurrent blooms of certain bacteria were noted within the system. Phylogenetic relationships of bacteria at one point in the river were determined using a cloning and sequencing approach, with Alphaproteobacteria dominating the community, followed by Cyanobacteria, Bacteroidetes and Betaproteobacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1574-6941.2008.00480.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!