The depletion force and depletion potential between two in principle unequal "big" hard spheres embedded in a multicomponent mixture of "small" hard spheres are computed using the rational function approximation method for the structural properties of hard-sphere mixtures [S. B. Yuste, A. Santos, and M. Lopez de Haro, J. Chem. Phys. 108, 3683 (1998)]. The cases of equal solute particles and of one big particle and a hard planar wall in a background monodisperse hard-sphere fluid are explicitly analyzed. An improvement over the performance of the Percus-Yevick theory and good agreement with available simulation results are found.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.2841172 | DOI Listing |
Viruses
December 2024
Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine.
Metformin, a widely used antidiabetic medication, has emerged as a promising broad-spectrum antiviral agent due to its ability to modulate cellular pathways essential for viral replication. By activating AMPK, metformin depletes cellular energy reserves that viruses rely on, effectively limiting the replication of pathogens such as influenza, HIV, SARS-CoV-2, HBV, and HCV. Its role in inhibiting the mTOR pathway, crucial for viral protein synthesis and reactivation, is particularly significant in managing infections caused by HIV, CMV, and EBV.
View Article and Find Full Text PDFViruses
December 2024
Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan.
Numerous host factors function as intrinsic antiviral effectors to attenuate viral replication. MARCH8 is an E3 ubiquitin ligase that has been identified as a host restriction factor that inhibits the replication of various viruses. This study elucidated the mechanism by which MARCH8 restricts respiratory syncytial virus (RSV) replication through selective degradation of the viral small hydrophobic (SH) protein.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
Plague, caused by , poses a public health threat not only due to sporadic outbreaks across the globe but also due to its potential as a biothreat agent. Ironically, among the seven deadliest pandemics in global history, three were caused by . Pneumonic plague, the more contagious and severe form of the disease, is difficult to contain, requiring either prophylactic antibiotic treatment or vaccination.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Petroleum and Energy Engineering, School of Science and Engineering, The American University in Cairo, New Cairo 11835, Egypt.
One of the most challenging aspects of manipulating the flow of fluids in subsurfaces is to control their flow direction and flow behavior. This can be especially challenging for compressible fluids, such as CO, and for multiphase flow, including both water and carbon dioxide (CO). This research studies the ability of two crosslinked polymers, including hydrolyzed polyacrylamide and acrylic acid/hydrolyzed polyacrylamide crosslinked polymers, to reduce the permeability of both CO and formation water using different salinities and permeability values and in the presence of crude oil under different injection rates.
View Article and Find Full Text PDFNutrients
December 2024
Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan 31511, Republic of Korea.
Dysregulated cellular metabolism is known to be associated with drug resistance in cancer treatment. In this study, we investigated the impact of cellular adaptation to lactic acidosis on intracellular energy metabolism and sensitivity to docetaxel in prostate carcinoma (PC) cells. The effects of curcumin and the role of hexokinase 2 (HK2) in this process were also examined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!