Nitrogen loss through lateral seepage in near-trench paddy fields.

J Environ Qual

Dep. of Environmental Engineering, College of Natural Resources and Environmental Science, Zhejiang Univ., Hangzhou, China.

Published: June 2008

A near-trench paddy field experiment with five urea application rates (0-360 kg N ha(-1) in 90-kg increments) was conducted on a paddy soil in the Taihu Lake Region of China to elucidate N losses through lateral seepage during three rice (Oryza sativa L.) growing seasons. The total N (Nt), NH4(+) -N, and NO3(-) -N concentrations in the lateral seepage water increased with increasing N rates. The seasonal Nt fluxes by lateral seepage varied from 6.8 to 25.6 kg N ha(-1) for urea application rates of 90 to 360 kg N ha(-1). Lateral seepage accounted for 4.7 to 6.6% of the Nt applied, implying that lateral seepage was an important pathway of N loss from near-trench paddy fields. The cumulative N loss via lateral seepage was significantly related to N fertilization rate (P = 0.05). Floodwater level was also identified as a main factor affecting N losses via lateral seepage from paddy fields, as indicated by a positive linear relationship (R2 = 0.43) between floodwater level and daily lateral flow during the flooded period (P = 0.05). Under the conditions of these experiments, a shallow floodwater depth of 50 mm, urea application rates of 90 kg N ha(-1) or less, and no rainfall within 1 wk after N application reduced N losses by lateral seepage from paddy fields.

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2007.0073DOI Listing

Publication Analysis

Top Keywords

lateral seepage
36
paddy fields
16
near-trench paddy
12
urea application
12
application rates
12
losses lateral
12
lateral
10
seepage
9
loss lateral
8
floodwater level
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!