Learning and memory in 5-HT(1A)-receptor mutant mice.

Behav Brain Res

Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Koserstrasse 20, 14195 Berlin, Germany.

Published: December 2008

The serotonin 1A (5-HT(1A))-receptor is involved in a wide range of physiological functions, but has also been implicated in the pathophysiology of anxiety disorders and depression. Although the 5-HT(1A)-receptor is one of the best described receptor subtypes of the serotonergic system, its complex distribution pattern, pre- and postsynaptic localisation, and its impact on various neurotransmitters aggravate the attribution of 5-HT(1A)-agonistic effects to behavioural outcomes. The role of 5-HT(1A)-receptors for cognitive processes seems undisputed. However, the exact involvement of pre- and postsynaptic sites remains unexplained. Genetically modified animals are a complementary approach to pharmacological studies for further investigations of the role of the 5-HT(1A)-receptor. Next to 5-HT(1A)-receptor knockout mice, two transgenic mouse lines exist that either overexpress the 5-HT(1A)-receptor transiently or permanently. The latter mouse line stands out due to the fact that a distinct overexpression is primarily found in the outer cortical layers and hippocampus, both projection areas of serotonergic neurons. Here, we discuss the findings obtained from 5-HT(1A)-receptor knockout and overexpressing mice concerning their learning and memory abilities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2008.02.028DOI Listing

Publication Analysis

Top Keywords

learning memory
8
pre- postsynaptic
8
5-ht1a-receptor knockout
8
5-ht1a-receptor
7
memory 5-ht1a-receptor
4
5-ht1a-receptor mutant
4
mutant mice
4
mice serotonin
4
serotonin 5-ht1a-receptor
4
5-ht1a-receptor involved
4

Similar Publications

Evaluating amyloid-beta aggregation and toxicity in transgenic Caenorhabditis elegans models of Alzheimer's disease.

Methods Cell Biol

January 2025

Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Santa Maria, RS, Brazil.

Alzheimer's disease (AD) is the leading cause of dementia in the elderly, clinically characterized by memory loss, cognitive decline, and behavioral disturbances. Its pathogenesis is not fully comprehended but involves intracellular depositions of amyloid beta peptide (Aβ) and neurofibrillary tangles of hyperphosphorylated tau. Currently, pharmacological interventions solely slow the progression of symptoms.

View Article and Find Full Text PDF

Background: Protein abundance levels, sensitive to both physiological changes and external interventions, are useful for assessing the Alzheimer's disease (AD) risk and treatment efficacy. However, identifying proteomic prognostic markers for AD is challenging by their high dimensionality and inherent correlations.

Methods: Our study analyzed 1128 plasma proteins, measured by the SOMAscan platform, from 858 participants 55 years and older (mean age 63 years, 52.

View Article and Find Full Text PDF

High definition transcranial direct current stimulation as an intervention for cognitive deficits in Alzheimer's dementia: A randomized controlled trial.

J Prev Alzheimers Dis

February 2025

Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA; School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA.

Background: Recent disease-modifying treatments for Alzheimer's disease show promise to slow cognitive decline, but show no efficacy towards reducing symptoms already manifested.

Objectives: To investigate the efficacy of a novel noninvasive brain stimulation technique in modulating cognitive functioning in Alzheimer's dementia (AD).

Design: Pilot, randomized, double-blind, parallel, sham-controlled study SETTING: Clinical research site at UT Southwestern Medical Center PARTICIPANTS: Twenty-five participants with clinical diagnoses of AD were enrolled from cognition specialty clinics.

View Article and Find Full Text PDF

Menstrual cycle characteristics across the reproductive lifespan and cognitive function in midlife women.

Am J Obstet Gynecol

January 2025

Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.

Background: Menstrual cycle characteristics are potential indicators of hormonal exposures and may also signal cardiovascular disease risk factors, both of which are relevant to cognitive health. However, there is scarce epidemiological evidence on the association between cycle characteristics and cognitive function.

Objectives: We studied the associations of menstrual cycle characteristics at three stages of a woman's reproductive lifespan with cognitive function in midlife.

View Article and Find Full Text PDF

Physical unclonable in-memory computing for simultaneous protecting private data and deep learning models.

Nat Commun

January 2025

Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, China.

Compute-in-memory based on resistive random-access memory has emerged as a promising technology for accelerating neural networks on edge devices. It can reduce frequent data transfers and improve energy efficiency. However, the nonvolatile nature of resistive memory raises concerns that stored weights can be easily extracted during computation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!