The ionic speciation of sulfonamides is pH-driven and this may be crucial for their bioavailability and sorption to soil constituents, as well as for their uptake into bacterial cells. The inhibition behaviour of a bacterial test strain (Pseudomonas aeruginosa; DSM 1117), which was grown in the presence of different concentrations of 8 sulfonamides at pH values from 5 to 8, could be predicted by models that take the speciation of sulfonamides in- and outside of bacterial cells into account. Assuming a pH of 7.5 inside the cells (pH homeostasis), the strongest inhibition was predicted for the lowest external pH and for sulfonamides with the lowest pK(a) values. Growth experiments with Ps. aeruginosa basically reflected this predicted behaviour. However, Pantoea agglomerans -- a bacterial strain isolated from arable soil -- behaved surprisingly different regarding its pH dependency: all sulfonamides showed the strongest effects at pH 7 to 8 instead of being most effective at lowest pH, although the pK(a) dependencies followed the same pattern. Experimental and modeling results could be brought into good agreement for P. agglomerans if the cell-internal pH was admitted to approximate the external pH instead of implying pH homeostasis for modeling calculations. Thus, besides the actual concentration of sulfonamides, the pH dependent mode of reaction of different bacteria to sulfonamides may additionally govern the population dynamics in soils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2008.02.041 | DOI Listing |
Biochemistry (Mosc)
December 2024
Medicinal Chemistry Center, Togliatti State University, Togliatti, 445020, Russia.
Human carbonic anhydrase IX (CAIX) plays a key role in maintaining pH homeostasis of malignant neoplasms, thus creating a favorable microenvironment for the growth, invasion, and metastasis of tumor cells. Recent studies have established that inhibition of CAIX expressed on the surface of tumor cells significantly increases the efficacy of classical chemotherapeutic agents and makes it possible to suppress the resistance of tumor cells to chemotherapy, as well as to increase their sensitivity to drugs (in particular, to reduce the required dose of cytostatic agents). In this work, we studied the ability of new CAIX inhibitors based on substituted 1,2,4-oxadiazole-containing primary aromatic sulfonamides, to potentiate the cytostatic effect of gefitinib (selective inhibitor of epidermal growth factor receptor tyrosine kinase domain) under hypoxic conditions.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Ministry of Ecology and Environment Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Polution, Chengdu University of Technology, Chengdu 610059, China. Electronic address:
Sulfonamides are receiving increased attention due to their persistence in the environment and potential ecological risks. However, there are currently relatively few studies on the toxicity response of aquatic plants grown under the single and mixed planting methods to sulfadiazine (SD). This study investigated the response of the Vallisneria natans (Lour.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain.
The present study evaluates for the first time the seasonal performance of an innovative green groundwater treatment. The pilot plant combines microalgae-bacteria treatment and a cork-wood biofilter to reduce nitrates, pesticides, antibiotics (ABs), and antibiotic resistance genes (ARGs) from groundwater. Groundwater had nitrate concentrations ranging from 220 to 410 mg/L, while ABs (sulfonamides and fluoroquinolones) and pesticides (triazines) were detected at concentrations ranging from a few ng/L to 150 ng/L.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Sorghum Research Institute, Shanxi Agricultural University, Jinzhong 030600, China.
The partitioning and migrating of antibiotic residues pose a considerable pollution to the river environment. However, a source-specific approach for quantifying the fate of antibiotics is lacking. To further elucidate the migration behavior of antibiotics from different pollution sources in aquatic environments, we introduced a source-specific partition coefficient (S-Kp) based on Positive Matrix Factorization (PMF) model to improve the multimedia model.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266404, China.
Antibiotic resistance genes (ARGs) are emerging environmental pollutants, posing an escalating threat to public health and environmental security worldwide. However, the relationship between ARGs and microbial communities in the environment, as well as their ecological effects on the microbe-mediated materials cycle remain unclear. In this study, we investigated the spatial distribution pattern, influence mechanism, relationship with microorganisms, and their effects on the elemental cycling of ARGs in East China Sea sediments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!