Chick embryonic Schwann cells migrate anodally in small electrical fields.

Exp Neurol

Department of Biological Science, Purdue University, West Lafayette, IN 47907, USA.

Published: June 2008

Little is known about the cues that guide migrating neural crest derivatives to their targets. This lack of understanding is especially significant in the case of Schwann cells, which have been transplanted into the central nervous system in an effort to promote axonal myelination after injury or disease. We have investigated the response of Schwann cells, cultured from the peripheral nerves of E7/8 chick embryos, to applied electrical fields. We find that they respond by migrating to the anode, and show a significant anodal bias in directionality at 3 mV mm(-1). This is the smallest electrical field that has been shown to affect cellular movement or growth in culture, and the anodal direction is surprising given the known cathodal responses of neural crest cells. The effective fields are considerably smaller than endogenous electrical fields that have been measured in embryonic tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2483403PMC
http://dx.doi.org/10.1016/j.expneurol.2008.02.015DOI Listing

Publication Analysis

Top Keywords

schwann cells
12
electrical fields
12
neural crest
8
chick embryonic
4
embryonic schwann
4
cells
4
cells migrate
4
migrate anodally
4
anodally small
4
electrical
4

Similar Publications

Peripheral nerve injury repair has always been a research concern of scientists. At the tissue level, axonal regeneration has become a research spotlight in peripheral nerve repair. Through transplantation of autologous nerve grafts or other emerging biomaterials functional recovery after facial nerve injury is not ideal in clinical scenarios.

View Article and Find Full Text PDF

Objective: Mutations in the thyroid hormone (TH) transporter monocarboxylate transporter 8 (MCT8) cause Allan-Herndon-Dudley syndrome (AHDS), a severe form of psychomotor retardation with muscle hypoplasia and spastic paraplegia as key symptoms. These abnormalities have been attributed to an impaired TH transport across brain barriers and into neural cells thereby affecting brain development and function. Likewise, Mct8/Oatp1c1 (organic anion transporting polypeptide 1c1) double knockout (M/Odko) mice, a well-established murine AHDS model, display a strongly reduced TH passage into the brain as well as locomotor abnormalities.

View Article and Find Full Text PDF

Schwann cells, as crucial regenerative cells, possess the ability to facilitate axon growth following peripheral nerve injury. However, the regeneration efficiency dominated by Schwann cells is impaired by factors such as the severity of peripheral nervous injury, aging, and metabolic disease. Cause the limitations of clinical treatments, it is necessary to urgently search for new substances that could reinforce the functionality of Schwann cells and promote nerve regeneration.

View Article and Find Full Text PDF

Uncommon retroperitoneal mass in a young adult: A rare case report of retroperitoneal schwannoma and review of diagnostic challenges.

Int J Surg Case Rep

January 2025

General Surgery Department, Center for Traumatology and Major Burns, 1st of May Street, El Iskan City, 2013, Ben Arous, Tunisia; Faculty of Medicine of Tunis. 15, Djebel Lakhdhar Street, 1007 Bab Saadoun, Tunis, Tunisia.

Introduction And Importance: Retroperitoneal schwannomas are extremely rare, benign tumors originating from Schwann cells in peripheral nerve sheaths, with few reported cases. Their deep location and nonspecific symptoms make preoperative diagnosis challenging, often requiring imaging and surgical resection for confirmation. This case highlights an uncommon presentation of retroperitoneal schwannoma in a young patient, emphasizing its rarity.

View Article and Find Full Text PDF

Peripheral neurodegenerative diseases induced by irreversible peripheral nerve degeneration (PND), such as diabetic peripheral neuropathy, have a high prevalence worldwide and reduce the quality of life. However, there is no agent effective against the irreversible PND. After peripheral nerve injury, Schwann cells play an important role in regulating PND.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!