Various invertebrates inhabiting hydrothermal vents possess sulfur-oxidizing bacteria in their tissues; however, the mechanisms by which toxic sulfides are delivered to these endosymbionts remain unknown. Recently, detoxification of sulfides using thiotaurine, a sulfur-containing amino acid, has been suggested. In this study, we propose the involvement of a taurine transporter in sulfide detoxification in the deep-sea mussel Bathymodiolus septemdierum by demonstrating: (i) the abundance of its mRNA in the gill; (ii) its activity under a wide range of salinities; (iii) its low Michaelis constant value in taurine transportation; and (iv) its affinity for thiotaurine and the thiotaurine precursor, hypotaurine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.febslet.2008.03.052 | DOI Listing |
Upper thermal tolerance may be limited by convective oxygen transport in fish, but the mechanisms constraining heart function remain elusive. The activation of anaerobic metabolism imposes an osmotic stress on cardiomyocytes at high temperatures that must be countered to prevent swelling and cardiac dysfunction. We tested the hypothesis that cardiac taurine efflux is required to counter the osmotic impact of anaerobic end product accumulation in brook char, Salvelinus fontinalis.
View Article and Find Full Text PDFLife Sci
December 2024
Department of Nutritional Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria. Electronic address:
Aims: Our previous findings indicate that caloric restriction (CR) stimulates the production and secretion of taurine-conjugated bile acids in mice. Subsequent processing by gut microbiota leads to increased levels of deconjugated bile acids, taurine, and various taurine conjugates in the intestine. Furthermore, we demonstrated that carbohydrate restriction and protein restriction, to a smaller extent, mirror the impact of CR in terms of hepatic production of bile acids but not their secretion.
View Article and Find Full Text PDFSci Rep
October 2024
Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 410, 405 30, Gothenburg, Sweden.
Ethanol-induced dopamine release in the nucleus accumbens (nAc) is associated with reward and reinforcement, and for ethanol to elevate nAc dopamine levels, a simultaneous increase in endogenous taurine is required within the same brain region. By employing in vivo microdialysis in male Wistar rats combined with pharmacological, chemogenetic and metabolic approaches, our aim with this study was to identify mechanisms underlying ethanol-induced taurine release. Our results demonstrate that the taurine elevation, elicited by either systemic or local ethanol administration, occurs both in presence and absence of action potential firing or NMDA receptor blockade.
View Article and Find Full Text PDFInt J Biochem Cell Biol
November 2024
Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China. Electronic address:
Metabolic changes are key drivers of tumor progression. Understanding how metabolic reprogramming promotes tumor development and identifying key metabolic activities are essential for improving tumor diagnosis and treatment. Among the numerous transporters in the body, solute carriers (SLCs) are particularly significant, often overexpressed in cancer cells to meet the tumor's demand for nutrients and energy.
View Article and Find Full Text PDFTransplantation
September 2024
Service de Biochimie, Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France.
Background: Taurine is one of the most abundant amino acids in humans. Low taurine levels are associated with cellular senescence, mitochondrial dysfunction, DNA damage, and inflammation in mouse, all of which can be reversed by supplementation. It is unknown whether taurine metabolism is associated with kidney allograft function and survival.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!