A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Photolytic decolorization of Rose Bengal by UV/H(2)O(2) and data optimization using response surface method. | LitMetric

Photolytic decolorization of Rose Bengal by UV/H(2)O(2) and data optimization using response surface method.

J Hazard Mater

Department of Chemistry, UAE University, P.O. Box 17551, Al-Ain, United Arab Emirates.

Published: November 2008

Rose Bengal (C.I. name is Acid Red 94) was irradiated with UV light in the presence of hydrogen peroxide. The photoinduced decolorization of the dye was monitored spectrophotometrically. The apparent rate of decolorization was calculated from the observed absorption data and was found to be pseudo first order. A systematic study of the effect of dye concentration and H(2)O(2) concentration on the kinetics of dye decolorization was also carried out. Dye decolorization increased with increasing H(2)O(2) concentration and decreasing dye concentration. The maximum dye decolorization was determined as 90% with 0.005 mM dye at optimum 0.042 M H(2)O(2) and pH 6.6. Additionally, the effect on decolorization of this dye in the presence of some additives (ions) was also investigated. It was seen that sulphite caused a maximum effect on % decolorization of the dye solution. A plausible explanation involving the probable radical initiated mechanism was given to explain the dye decolorization. The experimental data was also optimized using the response surface methodology (RSM). According to ANOVA results, the proposed model can be used to navigate the design space. It was found that the response of Rose Bengal degradation is very sensitive to the independent factors of dye concentration, H(2)O(2) concentration, pH and reaction time. The proposed model for D-optimal design fitted very well with the experimental data with R(2) and R(adj)(2) correlation coefficients of 0.85 and 0.80, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2008.02.098DOI Listing

Publication Analysis

Top Keywords

dye decolorization
16
rose bengal
12
decolorization dye
12
dye concentration
12
h2o2 concentration
12
dye
11
response surface
8
decolorization
8
concentration h2o2
8
experimental data
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!