Inherent safety key performance indicators for hydrogen storage systems.

J Hazard Mater

Dipartimento di Ingegneria Chimica, Chimica Industriale e Scienza dei Materiali, Università di Pisa, via Diotisalvi n.2, 56126 Pisa, Italy.

Published: November 2008

The expected inherent safety performance of hydrogen storage technologies was investigated. Reference schemes were defined for alternative processes proposed for hydrogen storage, and several storage potentialities were considered. The expected safety performance of alternative process technologies was explored estimating key performance indicators based on consequence assessment and credit factors of possible loss of containment events. The results indicated that the potential hazard is always lower for the innovative technologies proposed for hydrogen storage, as metal or complex hydrides. This derived mainly from the application of the inherent safety principles of "substitution" and "moderation", since in these processes hydrogen is stored as a less hazardous hydride. However, the results also evidenced that in the perspective of an industrial implementation of these technologies, the reliability of the auxiliary equipment will be a critical issue to be addressed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2008.02.080DOI Listing

Publication Analysis

Top Keywords

hydrogen storage
16
inherent safety
12
key performance
8
performance indicators
8
safety performance
8
proposed hydrogen
8
hydrogen
5
storage
5
safety key
4
performance
4

Similar Publications

RpH-ILV: Probe for lysosomal pH and acute LLOMe-induced membrane permeabilization in cell lines and .

Sci Adv

January 2025

Department of Biochemistry Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.

Lysosomal pH dysregulation is a critical element of the pathophysiology of neurodegenerative diseases, cancers, and lysosomal storage disorders (LSDs). To study the role of lysosomes in pathophysiology, probes to analyze lysosomal size, positioning, and pH are indispensable tools. Here, we developed and characterized a ratiometric genetically encoded lysosomal pH probe, RpH-ILV, targeted to a subpopulation of lysosomal intraluminal vesicles.

View Article and Find Full Text PDF

Expanded Negative Electrostatic Network-Assisted Seawater Oxidation and High-Salinity Seawater Reutilization.

ACS Nano

January 2025

College of Chemistry Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China.

Coastal/offshore renewable energy sources combined with seawater splitting offer an attractive means for large-scale H electrosynthesis in the future. However, designing anodes proves rather challenging, as surface chlorine chemistry must be blocked, particularly at high current densities (). Additionally, waste seawater with increased salinity produced after long-term electrolysis would impair the whole process sustainability.

View Article and Find Full Text PDF

Organic hydrides can store hydrogen via chemical bonding under ambient conditions, enabling the safe storage and transportation of hydrogen gas using the same infrastructure for gasoline. However, in previous research, most organic hydrides have been produced from petroleum, and therefore replacing them with earth-abundant or renewable compounds is essential to ensure sustainability. This study demonstrates dihydrolevoglucosenone (CyreneTM), which is a biodegradable liquid ketone that is produced directly from biomass without pretreatments on an industrial scale, as a new renewable organic hydride.

View Article and Find Full Text PDF

Energy hubs, with their diverse regeneration and storage sources, can engage concurrently in energy transfer and storage. It is anticipated that managing the energy of these hubs within energy networks could enhance economic, environmental, and technical metrics. This article explains how electrical and thermal network hubs manage their energy consumption in the context of the multi-criteria objectives of efficiency, sustainability, reliability of the network operator, and operation.

View Article and Find Full Text PDF

Salt caverns are widely regarded as a suitable option for the underground storage of hydrogen. However, an accurate assessment of the hydrogen leakage through the walls of salt caverns into the surrounding formations remains crucial. In this work, the flow of hydrogen into the surrounding formation is evaluated by assuming that salt rock consists of bundles of tortuous nano-capillary tubes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!