Phosphorus removal from wastewater is of great importance. In the present study, ferric chloride was selected as the coagulant, and tannic acid (TA), a natural polymer, as the coagulant aid to develop an effective coagulation process with the emphasis of phosphorus recovery from different types of wastewater. The results showed that TA can accelerate the settling speed by forming flocs with large size, reduce the residual Fe(III) to eliminate the yellow color caused by Fe(III), and slightly increase the phosphorus removal efficiency. The precipitate formed by TA-aided coagulation showed the advantage of releasing phosphorus faster than ferric phosphate, indicating the possibility of phosphorus recovery from wastewater as slow release fertilizer. To further understand the structural characteristics of the precipitate, analytical techniques such as Raman spectroscopy, X-ray photoelectron spectroscopy and matrix-assisted laser desorption ionization-time of flight mass spectrometry were employed. The analytical results indicated that TA-Fe-P complex was formed during the coagulation/flocculation processes. Solid phase in the precipitate consisted of TA-Fe-P complex, Fe-TA complex and/or ferric hydroxyphosphate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2008.02.028 | DOI Listing |
J Environ Manage
January 2025
Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, School of Geographical Sciences, Harbin Normal University, Harbin, 150025, China; Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, 150025, China. Electronic address:
Nitrogen and phosphorus inputs to surface water bodies lead to a decline in water quality and a disruption in the balance of aquatic ecosystems. Emergent aquatic plants were widely used for their high efficiency in removing nitrogen and phosphorus from surface waters. However, there was a lack of systematic analyses on the purification of surface waters by emergent aquatic plants, and the mechanism of differences in nitrogen and phosphorus removal by different plants needs to be further revealed.
View Article and Find Full Text PDFSci Rep
January 2025
College of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, China.
The selection of suitable raw materials as adsorbents is a key factor in effectively removing phosphorus from water. As an industrial by-product, soda residue exhibits high porosity and surface area, which can effectively adsorb pollutants. Magnetic lanthanum-iron soda residue (La-Fe-CSR) was synthesized using the co-precipitation method, and its characterization and mechanism for removing phosphate were thoroughly investigated.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
Increasing toxic metal pollution in the aquatic ecosystem since the industrial revolution produces serious environmental challenges and has raised critical questions of ecological and human health implications. As a typical aquatic plant, Nasturtium officinale (N. officinale) has drawn significant attention due to its remarkable accumulation of heavy metals and other harmful substances from polluted water.
View Article and Find Full Text PDFToxics
December 2024
School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
Bioremediation is widely recognized as a promising and efficient approach for the elimination of Cd from contaminated paddy soils. However, the Cd removal efficacy achieved through this method remains unsatisfactory and is accompanied by a marginally higher cost. Cysteine has the potential to improve the bioleaching efficiency of Cd from soils and decrease the use cost since it is green, acidic and has a high Cd affinity.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
The technology of native chemical ligation and postligation desulfurization has greatly expanded the scope of modern chemical protein synthesis. Here, we report that ultrasonic energy can trigger robust and clean protein desulfurization, and we developed an ultrasound-induced desulfurization (USID) strategy that is simple to use and generally applicable to peptides and proteins. The USID strategy involves a simple ultrasonic cleaning bath and an easy-to-use and easy-to-remove sonosensitizer, titanium dioxide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!