Increased iron content and RNA oxidative damage in skeletal muscle with aging and disuse atrophy.

Exp Gerontol

Department of Aging and Geriatrics, Division of Biology of Aging, Genomics and Biomarkers Core of The Institute on Aging, University of Florida, Gainesville, USA.

Published: June 2008

Muscle atrophy with aging or disuse is associated with deregulated iron homeostasis and increased oxidative stress likely inflicting damage to nucleic acids. Therefore, we investigated RNA and DNA oxidation, and iron homeostasis in gastrocnemius muscles. Disuse atrophy was induced in 6- and 32-month old male Fischer 344/Brown Norway rats by 14 days of hind limb suspension (HS). We show that RNA, but not DNA, oxidative damage increased 85% with age and 36% with HS in aged muscle. Additionally, non-heme iron levels increased 233% with aging and 83% with HS at old age, while staining for free iron was strongest in the smallest fibers. Simultaneously, the mRNA abundance of transferrin receptor-1 decreased by 80% with age and 48% with HS for young animals, while that of the hepcidin regulator hemojuvelin decreased 37% with age, but increased about 44% with disuse, indicating a dysregulation of iron homeostasis favoring increased intracellular free iron in atrophied muscles. RNA and DNA concentrations increased with age and were negatively correlated with muscle mass, whereas protein concentrations decreased with aging, indicating a preferential loss of protein compared to nucleic acids. Furthermore, xanthine oxidase activity increased with age, but not with HS, while mRNA abundance of the Y box-binding protein-1, which has been suggested to bind oxidized RNA, did not change with age or HS. These results suggest that RNA oxidation, possibly mediated by increased non-heme iron, might contribute to muscle atrophy due to disuse particularly in aged muscle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2601529PMC
http://dx.doi.org/10.1016/j.exger.2008.02.007DOI Listing

Publication Analysis

Top Keywords

iron homeostasis
12
rna dna
12
increased
9
oxidative damage
8
aging disuse
8
disuse atrophy
8
muscle atrophy
8
nucleic acids
8
aged muscle
8
non-heme iron
8

Similar Publications

Mechanism and regulation of iron absorption throughout the life cycle.

J Adv Res

January 2025

Food Science & Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA.

Background: Iron plays a crucial role through various life stages of human. Iron homeostasis is primarily regulated by iron absorption which is mediated via divalent metal-ion transporter 1 (DMT1), and iron export protein ferroportin (FPN), as there is no active pathway for iron excretion from the body. Recent studies have shown that the magnitude of iron absorption changes through various life stages to meet changing iron requirements.

View Article and Find Full Text PDF

Deciphering the role of hepcidin in iron metabolism and anemia management.

J Trace Elem Med Biol

January 2025

Biochemistry Laboratory, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India. Electronic address:

One of the most common diseases worldwide is anemia, which is characterized by insufficient erythrocyte production. Numerous complex factors, such as chronic diseases, genetic mutations, and nutritional inadequacies, contribute to this widespread syndrome. This review focuses specifically on anemias caused by defective hepcidin production.

View Article and Find Full Text PDF

Ferritin From Striped Stem Borer (Chilo suppressalis) Oral Secretion Acts as an Effector Helping to Maintain Iron Homoeostasis and Impair Defenses in Rice.

Plant Cell Environ

January 2025

Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.

The striped stem borer (Chilo suppressalis, SSB) is a highly destructive insect pest in rice (Oryza sativa). SSB oral secretions (OSs) can induce plant defense responses in rice. However, the specific effectors in SSB OSs that mediate these interactions with rice remain poorly understood.

View Article and Find Full Text PDF

A mitochondrion-targeted poly(N-isopropylacrylamide-coacrylic acid) nanohydrogel with a fluorescent bioprobe for ferrous ion imaging in vitro and in vivo.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310007, China; Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China. Electronic address:

An imbalance in iron homeostasis contributes to mitochondrial dysfunction, which is closely linked to the pathogenesis of various diseases. Herein, we developed a nanosensor for detecting mitochondrial ferrous ions in vitro and in vivo. A poly(N-isopropylacrylamine)-coacrylic acid nanohydrogel was synthesized, and ferrous ions were detected using the fluorescent probe FeRhonox-1 embedded within it.

View Article and Find Full Text PDF

[Advancements in understanding iron metabolism in atherosclerosis].

Zhonghua Xin Xue Guan Bing Za Zhi

January 2025

Vascular Surgery Department, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing210008, China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!