A role for the spine apparatus in LTP and spatial learning.

Behav Brain Res

Institute of Clinical Neuroanatomy, J.W. Goethe-University of Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, Germany.

Published: September 2008

Long-term potentiation (LTP) of synaptic strength is a long-lasting form of synaptic plasticity that has been linked to information storage. Although the molecular and cellular events underlying LTP are not yet fully understood, it is generally accepted that changes in dendritic spine calcium levels as well as local protein synthesis play a central role. These two processes may be influenced by the presence of a spine apparatus, a distinct neuronal organelle found in a subpopulation of telencephalic spines. Mice lacking spine apparatuses (synaptopodin-deficient mice) show deficits in LTP and impaired spatial learning supporting the involvement of the spine apparatus in synaptic plasticity. In our review, we consider the possible roles of the spine apparatus in LTP1 (protein synthesis-independent), LTP2 (translation-dependent and transcription-independent) and LTP3 (translation- and transcription-dependent) and discuss the effects of the spine apparatus on learning and memory.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2008.02.033DOI Listing

Publication Analysis

Top Keywords

spine apparatus
20
spatial learning
8
synaptic plasticity
8
spine
6
apparatus
5
role spine
4
ltp
4
apparatus ltp
4
ltp spatial
4
learning long-term
4

Similar Publications

Objective: Pain management surrounding lumbar spine surgery is a complex topic. Though some authors suggest that preoperative opioid use is a negative prognostic factor, its association with patient-reported outcomes and satisfaction after surgery remains controversial. We aimed to uncover the effect of preoperative opioid use on long-term outcomes using a national sample.

View Article and Find Full Text PDF

Iliosacral screw osteosynthesis - state of the art.

Arch Orthop Trauma Surg

January 2025

Department of Orthopedics and Traumatology, University Medical Center Mainz, Mainz, Germany.

Iliosacral screw osteosynthesis is a widely recognized technique for stabilizing unstable posterior pelvic ring injuries, offering notable advantages, including enhanced mechanical stability, minimal invasiveness, reduced blood loss, and lower infection rates. However, the procedure presents technical challenges due to the complex anatomy of the sacrum and the proximity of critical neurovascular structures. While conventional fluoroscopy remains the primary method for intraoperative guidance, precise preoperative planning using multiplanar reconstructions and three-dimensional volume rendering is crucial for ensuring accurate placement of iliosacral or transsacral screws.

View Article and Find Full Text PDF

Study Design: Retrospective Cohort Study.

Objectives: Flexibility radiographs such as traction or bending radiographs are essential in preoperative imaging to assess for curve flexibility and to estimate the amount of operative correction in order to determine the type and length of instrumentation in growth-accompanying scoliosis treatment. Both traction and bending radiographs are controversially discussed in the literature.

View Article and Find Full Text PDF

Objective: Combining oblique lumbar interbody fusion (OLIF) with posterior pedicle screw fixation (PPSF) has been proposed to reduce cage subsidence, especially in osteoporotic spines. Recently, anterolateral screw-rod fixation has gained interest as it allows direct pathology observation and avoids a posterior approach. However, controversies exist between anterolateral screw fixation systems and traditional PPSF due to variations in osteoporotic vertebral mineral density, screw fixation positions, and fixation methods (bicortical vs.

View Article and Find Full Text PDF

Background: Transforaminal lumbar interbody fusion (TLIF) surgery has become increasingly popular in the surgical treatment of lumbar degenerative diseases. The optimal structure for stable double-segment fixation remains unclear.

Objective: To compare the biomechanical changes of unilateral fixation versus bilateral fixation in patients with lumbar degeneration undergoing double-segment TLIF surgery, and to explore the stability and feasibility of unilateral double-segment fixation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!