In the mouse tooth organ, shortly after birth, ameloblasts acquire their secretory phenotype, which is characterized by the prominent expression and subsequent secretion of two isoforms of amelogenin, M180 and M59 (LRAP, [A-4]). Amelogenin deposition into the ameloblast extracellular matrix promotes enamel biomineralization. A complex set of intercellular signaling events, reciprocal communications between the developing oral epithelium and its underlying dental mesenchyme, guide the expression of amelogenin mRNA, and limit it to a defined period of tooth development. In tooth germ organ culture, addition of the [A-4] isoform, lacking amelogenin exon 4 and exon 6 segments a, b, c, was shown to affect ameloblast development. To understand the basis for this regulatory activity, we have studied the effects of r[A-4] on ameloblast-like LS8 cells, and the role of the putative [A-4] cell surface receptor, LAMP1, as well as the related receptor LAMP3. In the LS8 cells, the expression of the spliced isoforms of amelogenin, LAMP1, and LAMP3 were identified by RT-PCR, and real-time PCR semi-quantitative analysis assessed the modulation of M180 message. M180 mRNA was up-regulated by exogenous [A-4], and this was further increased by blockade of LAMP1, suggesting additive effects between the intracellular signaling pathways activated by the discrete agonists. Immunofluorescence staining identified the patterns of [A-4] and LAMP1 localization in LS8 cells. Internalized r[A-4] was co-localized with LAMP1 in late endosomal/lysosomal compartments. Thus, the LAMP1 and [A-4] intracellular sorting pathways are interrelated. The nitric oxide (NO) signaling pathway was activated by exogenous [A-4]. [A-4] modulated inducible nitric oxide synthase (iNOS, NOS2) and endothelial nitric oxide synthase (eNOS, NOS3) expression, albeit, to different extents. NOS2 was significantly up-regulated after 4 h, while NOS3 increased slightly after 24 h. Co-treatment of LS8 cells with r[A-4] and anti-LAMP1 antibodies further enhanced NOS2 expression. Anti-LAMP1 antibodies did not abrogate NO production in LS8 cells treated for 4 h with r[A-4], but the iNOS inhibitor, l-Nil, down-regulated both NO production and the expression of M180 mRNA. These data suggest that [A-4] modulates M180 mRNA expression, partly, via the NO signaling pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2442712PMC
http://dx.doi.org/10.1016/j.bone.2008.01.023DOI Listing

Publication Analysis

Top Keywords

ls8 cells
20
m180 mrna
12
nitric oxide
12
[a-4]
10
[a-4] amelogenin
8
isoforms amelogenin
8
exogenous [a-4]
8
signaling pathway
8
oxide synthase
8
anti-lamp1 antibodies
8

Similar Publications

[WWP1 plays a positive role in ameloblast differentiation and enamel formation in mice].

Zhonghua Kou Qiang Yi Xue Za Zhi

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan430079, China.

Article Synopsis
  • The study focuses on the role of WWP1, a protein ligase, in the enamel development of mice.
  • Single-cell RNA sequencing and immunohistochemistry showed that WWP1 is highly expressed in dental epithelial cells, specifically in ameloblasts involved in enamel formation.
  • Wwp1 knockout mice displayed significant enamel developmental defects, including reduced enamel volume and disorganized enamel structures compared to control mice.
View Article and Find Full Text PDF

Enamel protects teeth from external irritation and its formation involves sequential differentiation of ameloblasts, a dental epithelial cell. Keratinocyte differentiation factor 1 (KDF1) is important in the development of epithelial tissues and organs. However, the specific role of KDF1 in enamel formation and corresponding regulatory mechanisms are unclear.

View Article and Find Full Text PDF

Fluoride Alters Gene Expression via Histone H3K27 Acetylation in Ameloblast-like LS8 Cells.

Int J Mol Sci

September 2024

Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA.

Article Synopsis
  • - Fluoride ingestion during tooth development can lead to dental fluorosis, and it activates histone acetyltransferase (HAT), which modifies the protein p53 and contributes to fluoride toxicity in specific mouse cells (LS8).
  • - The study showed that fluoride modifies histone acetylation, altering gene expression in LS8 cells, as evidenced by increased acetylation levels of certain genes and corresponding mRNA expression when treated with fluoride.
  • - This research is the first to highlight that fluoride treatment can lead to epigenetic changes through H3 acetylation, indicating a need for further investigation into how fluoride affects enamel development on a genetic level.
View Article and Find Full Text PDF

Epigallocatechin-3-gallate attenuates fluoride induced apoptosis via PI3K/FoxO1 pathway in ameloblast-like cells.

Toxicon

August 2024

Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China. Electronic address:

Fluoride is a double-edged sword. It was widely used for early caries prevention while excessive intake caused a toxicology effect, affected enamel development, and resulted in dental fluorosis. The study aimed to evaluate the protective effect and mechanism of Epigallocatechin-3-gallate (EGCG) on the apoptosis induced by fluoride in ameloblast-like cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!