We evaluated chromosomal aberrations in lymphocytes of 177 workers exposed to xenobiotics in a tire plant and in 172 controls, in relation to their genetic background. Nine polymorphisms in genes encoding biotransformation enzymes and nine polymorphisms in genes involved in main DNA repair pathways were investigated for possible modulation of chromosomal damage. Chromosomal aberration frequencies were the highest among exposed smokers and the lowest in non-smoking unexposed individuals (2.5+/-1.8% vs. 1.7+/-1.2%, respectively). The differences between groups (ANOVA) were borderline significant (F=2.6, P=0.055). Chromosomal aberrations were higher in subjects with GSTT1-null (2.4+/-1.7%) than in those with GSTT1-plus genotype (1.8+/-1.4%; F=7.2, P=0.008). Considering individual groups, this association was significant in smoking exposed workers (F=4.4, P=0.040). Individuals with low activity EPHX1 genotype exhibited significantly higher chromosomal aberrations (2.3+/-1.6%) in comparison with those bearing medium (1.7+/-1.2%) and high activity genotype (1.5+/-1.2%; F=4.7, P=0.010). Both chromatid- and chromosome-type aberration frequencies were mainly affected by exposure and smoking status. Binary logistic regression analysis revealed that frequencies of chromatid-type aberrations were modulated by NBS1 Glu185Gln (OR 4.26, 95%CI 1.38-13.14, P=0.012), and to a moderate extent, by XPD Lys751Gln (OR 0.16, 95%CI 0.02-1.25, P=0.081) polymorphisms. Chromosome-type aberrations were lowest in individuals bearing the EPHX1 genotype conferring the high activity (OR 0.38, 95%CI 0.15-0.98, P=0.045). Present results show that exposed individuals in the tire production, who smoke, exhibit higher chromosomal aberrations frequencies, and the extent of chromosomal damage may additionally be modified by relevant polymorphisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mrfmmm.2008.02.007DOI Listing

Publication Analysis

Top Keywords

chromosomal aberrations
20
chromosomal
8
tire plant
8
dna repair
8
polymorphisms genes
8
chromosomal damage
8
aberration frequencies
8
ephx1 genotype
8
higher chromosomal
8
high activity
8

Similar Publications

Expanded non-invasive prenatal testing offers better detection of fetal copy number variations but not chromosomal aneuploidies.

PLoS One

January 2025

Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe Central Hospital, Luohe, Henan Province, People's Republic of China.

Purpose: To evaluate the clinical performance of expanded non-invasive prenatal testing (NIPT-plus) and compare its effectiveness in screening for chromosomal aneuploidies with that of NIPT.

Methods: Screening results, confirmatory invasive testing results, and follow-up data from pregnant women who underwent either NIPT (6792 cases) or NIPT-Plus (5237 cases) testing at Luohe Central Hospital, China, from January 2019 to June 2023 were collected. The positive predictive value (PPV), sensitivity, specificity, and other indicators for different types of chromosomal abnormalities in NIPT/NIPT-plus screening were calculated.

View Article and Find Full Text PDF

Dynamics and regulatory roles of RNA mA methylation in unbalanced genomes.

Elife

January 2025

Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.

-methyladenosine (mA) in eukaryotic RNA is an epigenetic modification that is critical for RNA metabolism, gene expression regulation, and the development of organisms. Aberrant expression of mA components appears in a variety of human diseases. RNA mA modification in has proven to be involved in sex determination regulated by and may affect X chromosome expression through the MSL complex.

View Article and Find Full Text PDF

Acute lymphoblastic leukaemia is the most common childhood malignancy that remains a leading cause of death in childhood. It may be characterised by multiple known recurrent genetic aberrations that inform prognosis, the most common being hyperdiploidy and t(12;21) . We aimed to assess the applicability of a new imaging flow cytometry methodology that incorporates cell morphology, immunophenotype, and fluorescence in situ hybridisation (FISH) to identify aneuploidy of chromosomes 4 and 21 and the translocation .

View Article and Find Full Text PDF

Chromosomal aneuploidies are a major cause of developmental failure and pregnancy loss. To investigate the possible consequences of aneuploidy on early embryonic development in vitro, we focused on primed pluripotent stem cells that are relatable to the epiblast of post-implantation embryos in vivo. We used human induced pluripotent stem cells (iPSCs) as an epiblast model and altered chromosome numbers by treating with reversine, a small-molecule inhibitor of monopolar spindle 1 kinase (MSP1) that inactivates the spindle assembly checkpoint, which has been strongly implicated in chromosome mis-segregation and aneuploidy generation.

View Article and Find Full Text PDF

A de novo, mosaic and complex chromosome 21 rearrangement causes APP triplication and familial autosomal dominant early onset Alzheimer disease.

Sci Rep

January 2025

Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.

Copy number variation (CNV) of the amyloid-β precursor protein gene (APP) is a known cause of autosomal dominant Alzheimer disease (ADAD), but de novo genetic variants causing ADAD are rare. We report a mother and daughter with neuropathologically confirmed definite Alzheimer disease (AD) and extensive cerebral amyloid angiopathy (CAA). Copy number analysis identified an increased number of APP copies and genome sequencing (GS) revealed the underlying complex genomic rearrangement (CGR) including a triplication of APP with two unique breakpoint junctions (BPJs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!