Phase-change materials (PCM) can be used to reduce thermal stress and improve thermal comfort for workers wearing protective clothing. The aim of this study was to investigate the effect of PCM in protective clothing used in simulated work situations. We hypothesized that it would be possible to optimize cooling performance with a design that focuses on careful positioning of PCM, minimizing total insulation and facilitating moisture transport. Thermal stress and thermal comfort were estimated through measurement of body heat production, body temperatures, sweat production, relative humidity in clothing and subjective ratings of thermal comfort, thermal sensitivity and perception of wetness. Experiments were carried out using 2 types of PCM, the crystalline dehydrate of sodium sulphate and microcapsules in fabrics. The results of 1 field and 2 laboratory experimental series were conclusive in that reduced thermal stress and improved thermal comfort were related to the amount and distribution of PCM, reduced sweat production and adequate transport of moisture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10803548.2008.11076746 | DOI Listing |
Front Public Health
December 2024
Landscape Architecture College, Sichuan Agricultural University, Chengdu, China.
Introduction: The COVID-19 pandemic has underscored the health benefits of green spaces, yet research on how specific elements of natural infrastructure affect well-being during the pandemic has been limited.
Methods: This study, conducted at Sichuan Agricultural University with 300 students in 2022, investigated how urban natural infrastructure impacts physical and psychological well-being during the pandemic. Different aspects of natural infrastructure, such as thermal comfort, air quality (negative ion concentration), and noise and light levels, varied in their positive effects on students' health.
Nanomicro Lett
December 2024
Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China.
Dual-band electrochromic devices capable of the spectral-selective modulation of visible (VIS) light and near-infrared (NIR) can notably reduce the energy consumption of buildings and improve the occupants' visual and thermal comfort. However, the low optical modulation and poor durability of these devices severely limit its practical applications. Herein, we demonstrate an efficient and flexible bifunctional dual-band electrochromic device which not only shows excellent spectral-selective electrochromic performance with a high optical modulation and a long cycle life, but also displays a high capacitance and a high energy recycling efficiency of 51.
View Article and Find Full Text PDFBurns
December 2024
Parkland Health, 5200 Harry Hines Blvd, Dallas, TX 75235, USA. Electronic address:
Health and racial disparities can limit access to preventative, trauma, and chronic disease care but have not been addressed in burn resuscitation. Over- and under-resuscitation contribute to increased overall hospital costs, and morbidity and mortality rates. The primary objective of this study was to identify potential racial disparities that may exist during the initial fluid resuscitation after burn injury.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Advanced Materials Additive Manufacturing Innovation Research Centre, College of Engineering, Hangzhou City University, Hangzhou, 310015, P. R. China.
Porous thermal insulating ceramics play a pivotal role in both industrial processes and daily life by offering effective insulation solutions that reduce energy consumption, enhance building comfort, and contribute to the sustainability of industrial production. This review offers a comprehensive examination of porous thermal insulating ceramics produced by 3D printing, providing an in-depth analysis of various 3D printing techniques and materials used to produce porous ceramics, detailing the fabrication processes, advantages, and limitations of these methods. Recent advances in 3D printed porous thermal insulating ceramics are thoroughly examined, with a particular focus on pore structure design and optimization strategies for high-performance thermal insulation.
View Article and Find Full Text PDFAdv Healthc Mater
December 2024
Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China.
The advent of bionic skin sensors represents a significant leap forward in the realm of wearable health monitoring technologies. Existing bionic skin technologies face several limitations, including complex and expensive manufacturing processes, low wearing comfort, and challenges in achieving comfortable real-time health monitoring. These shortcomings hinder the widespread adoption and practical utility of bionic skin in various applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!