The Mi-1 gene in tomato confers effective resistance against several species of root-knot nematode, including Meloidogyne javanica. A strain of M. javanica that can reproduce on tomato with Mi-1 was obtained from a culture of an avirulent strain after greenhouse selection. DNA blots and amplified fragment length polymorphism (AFLP) analysis indicated that the two nematode strains are closely related. Expression patterns visualized as cDNA AFLPs were nearly identical except for a cDNA fragment, Cg-1, that was present in the avirulent strain but not in the virulent strain. DNA blots showed that Cg-1 corresponds to a member of a small gene family with one or more copies missing in the virulent strain compared with the avirulent strain. Except for the presence of a histone stem loop near the 3' end of the transcript, Cg-1 shows no similarity to other sequences in GenBank. The longest open reading frame is 32 amino acids and initiates at the fourth AUG in the predicted transcript. When nematode juveniles of the Mi-1-avirulent strain were soaked in dsRNA corresponding to part of the predicted Cg-1 transcript, they produced progeny that were virulent on tomato carrying the Mi-1 gene, strongly suggesting that Cg-1 is required in the nematode for Mi-1-mediated resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/MPMI-21-5-0576 | DOI Listing |
Int J Mol Sci
December 2024
Department of Microbiology and Parasitology, Pharmacy Faculty at Complutense University of Madrid, 28040 Madrid, Spain.
Extracellular vesicles (EVs) from can elicit immune responses, positioning them as promising acellular vaccine candidates. We characterized EVs from an avirulent cell wall mutant (Δ) and evaluated their protective potential against invasive candidiasis. EVs from the yeast (YEVs) and hyphal (HEVs) forms of the SC5314 wild-type strain were also tested, yielding high survival rates with SC5314 YEV (91%) and YEV immunization (64%).
View Article and Find Full Text PDFMicroorganisms
December 2024
Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand.
Vibriosis caused by is a major problem in aquatic animals, particularly brown marble groupers (). biotype I has recently been isolated and classified into subgroups SUKU_G1, SUKU_G2, and SUKU_G3 according to the different types of virulence genes. In a previous study, we have shown that biotype I strains were classified into three subgroups according to the different types of virulence genes, which exhibited different phenotypes in terms of growth rate and virulence.
View Article and Find Full Text PDFPathogens
December 2024
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou 310000, China.
pv. () is the causative agent of rice bacterial blight (RBB), resulting in substantial harvest losses and posing a challenge to maintaining a stable global supply. In this study, strains isolated from Shaoxing, Quzhou, and Taizhou, where RBB occurred most frequently in Zhejiang Province in 2019, were selected as the subjects of research.
View Article and Find Full Text PDFJ Virol
December 2024
Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA.
Protein kinase R (PKR) is an interferon-induced antiviral protein activated by autophosphorylation in response to double strand DNA (dsRNA) and other stimuli. Activated PKR causes translation inhibition and apoptosis, and it contributes to proinflammatory responses, cell growth, and differentiation. Mouse adenovirus type 1 (MAV-1) counteracts PKR by causing its degradation via a viral protein, early region 4 open reading frame 6 (E4orf6).
View Article and Find Full Text PDFFish Shellfish Immunol
December 2024
Univ Brest, CNRS, IRD, Ifremer, UMR 6539, LEMAR, Plouzané France. Electronic address:
The vibriosis of the European abalone, Haliotis tuberculata, is characterized by the rapidity of the infection by the pathogen Vibrio harveyi ORM4, leading to death of animals only after two days. The lethality of the pathogen is linked to the production of the type III secretion system (T3SS) and to genes regulated by quorum sensing (QS). The aim of this study was to investigate the colonization of the European abalone by both virulent and avirulent V.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!