A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Reaction of trimethylchlorosilane in spin-on Silicalite-1 zeolite film. | LitMetric

Reaction of trimethylchlorosilane in spin-on Silicalite-1 zeolite film.

Langmuir

IMEC, Kapeldreef 75, 3001 Leuven, Belgium, Centrum voor Oppervlaktechemie en Katalyse, Katholieke Universiteit Leuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium.

Published: May 2008

We present a study on the hydrophobization of spin-on Silicalite-1 zeolite films through silylation with trimethylchlorosilane. Microporous and micro-mesoporous Silicalite-1 films were synthesized by spin coating of suspensions of Silicalite-1 nanozeolite crystallized for different times. Ellipsometric porosimetry with toluene and water adsorbates reveals that silylation decreases the porosity and makes the films hydrophobic. The decrease in porosity depends on the exposed surface area in the pores. Water contact angle measurements confirm the hydrophobicity. Fourier transform infrared spectroscopy reveals that the trimethylsilyl groups are chemisorbed selectively on isolated silanols and less on geminal and vicinal silanols due to steric limitations. Time-of-flight secondary-ion mass spectroscopy and in situ ellipsometry analysis of the reaction kinetics show that the silylation is a bulk process occurring in the absence of diffusion limitation. Electrical current leakage on films decreases upon silylation. Silylation with trimethylchlorosilane is shown to be an effective hydrophobization method for spin-on Silicalite-1 zeolite films.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la800086yDOI Listing

Publication Analysis

Top Keywords

spin-on silicalite-1
12
silicalite-1 zeolite
12
zeolite films
8
silylation trimethylchlorosilane
8
silicalite-1
5
films
5
silylation
5
reaction trimethylchlorosilane
4
trimethylchlorosilane spin-on
4
zeolite film
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!