Cultured guinea pig atrial whole mounts containing the intrinsic cardiac ganglia were used as an in vitro model to investigate the induction of the stress/injury marker activating transcription factor 3 (ATF-3). ATF-3 expression was quantified by using immunocytochemical labeling and real-time PCR. In freshly isolated ganglia, no neuronal or Schwann cell nuclei exhibited ATF-3 immunoreactivity. In 2-hour cultures, the induction of ATF-3 expression was evident in many Schwann cell nuclei, whereas no neuronal nuclei were ATF-3 immunoreactive. Beginning at 4 hours, the percentage of neurons with ATF-3-immunoreactive nuclei increased progressively, and, by 48 hours in culture, approximately 95% of the cardiac neurons had ATF-3-immunoreactive nuclei. Neurturin significantly suppressed ATF-3 expression in 48-hour-cultured neurons without effect on ATF-3 expression in Schwann cell nuclei. Neuturin also could reverse neuronal ATF-3 expression after its induction. The suppression of ATF-3 induction by neurturin was mediated by activation of the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways. Glial-derived neurotrophic factor (GDNF) also suppressed neuronal ATF-3 induction during culture. However, culture in serum-free media, presence of nerve growth factor, or addition of pituitary adenylate cyclase-activating polypeptide had no effect on ATF-3 induction in the 48-hour-cultured cardiac neurons. By 4 hours in culture, there was a significant increase in ATF-3 transcript levels, and neurturin partially suppressed ATF-3 transcript levels in 48-hour cultures. It is proposed that the loss of target-derived neurturin is a potential mechanism stimulating injury-induced expression of ATF-3 in cardiac neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.21711DOI Listing

Publication Analysis

Top Keywords

atf-3 expression
20
atf-3
14
schwann cell
12
cell nuclei
12
cardiac neurons
12
atf-3 induction
12
activating transcription
8
transcription factor
8
cultured guinea
8
guinea pig
8

Similar Publications

Spatial proteomics and transcriptomics of the maternal-fetal interface in placenta accreta spectrum.

Transl Res

December 2024

Dept of UCD Obstetrics and Gynaecology, School of Medicine, University College Dublin, National Maternity Hospital, Holles Street, Dublin 2, Ireland; Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland; University College Dublin Gynaecological Oncology Group (UCD-GOG), Mater Misericordiae University Hospital and St Vincent's University Hospital, Dublin, Ireland. Electronic address:

In severe Placenta Accreta Spectrum (PAS), trophoblasts gain deep access in the myometrium (placenta increta). This study investigated alterations at the fetal-maternal interface in PAS cases using a systems biology approach consisting of immunohistochemistry, spatial transcriptomics and proteomics. We identified spatial variation in the distribution of CD4, CD3 and CD8 T-cells at the maternal-interface in placenta increta cases.

View Article and Find Full Text PDF

Fenamates as classical nonsteroidal anti-inflammatory agents are widely used for relieving pain. Preclinical studies and epidemiological data highlight their chemo-preventive and chemotherapeutic potential for cancer. However, comprehensive reviews of fenamates in cancer are limited.

View Article and Find Full Text PDF

Alternol is a small molecular compound isolated from the fermentation of a mutant fungus obtained from Taxus brevifolia bark. Our previous studies showed that Alternol treatment induced reactive oxygen species (ROS)-dependent immunogenic cell death. This study conducted a comprehensive investigation to explore the mechanisms involved in Alternol-induced immunogenic cell death.

View Article and Find Full Text PDF

Age-related diseases are intricately linked to the molecular processes underlying aging, with the decline of the antiaging protein Klotho being a key factor. Investigating these processes is crucial for developing therapeutic strategies. The age-associated reduction in Klotho expression, coupled with a decline in the endocrine hormone triiodothyronine (T3), prompted a detailed exploration of their potential interplay.

View Article and Find Full Text PDF

Background: Fibromyalgia is characterized by chronic pain, fatigue, and other somatic symptoms. We have recently revealed that proprioceptor hyperactivation induces chronic pain in a rat model of myalgic encephalomyelitis. The present study explores whether similar proprioceptor-induced pain is elicited in a mouse model of fibromyalgia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!