Asian soybean rust (ASR) is caused by the fungal pathogen Phakopsora pachyrhizi Sydow & Sydow. It was first identified in Brazil in 2001 and quickly infected soybean areas in several countries in South America. Primary efforts to combat this disease must involve the development of resistant cultivars. Four distinct genes that confer resistance against ASR have been reported: Rpp1, Rpp2, Rpp3, and Rpp4. However, no cultivar carrying any of those resistance loci has been released. The main objective of this study was to genetically map Rpp2 and Rpp4 resistance genes. Two F(2:3) populations, derived from the crosses between the resistant lines PI 230970 (Rpp2), PI 459025 (Rpp4) and the susceptible cultivar BRS 184, were used in this study. The mapping populations and parental lines were inoculated with a field isolate of P. pachyrhizi and evaluated for lesion type as resistant (RB lesions) or susceptible (TAN lesions). The mapping populations were screened with SSR markers, using the bulk segregant analysis (BSA) to expedite the identification of linked markers. Both resistance genes showed an expected segregation ratio for a dominant trait. This study allowed mapping Rpp2 and Rpp4 loci on the linkage groups J and G, respectively. The associated markers will be of great value on marker assisted selection for this trait.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-008-0752-0DOI Listing

Publication Analysis

Top Keywords

confer resistance
8
rpp2 rpp4
8
resistance genes
8
mapping populations
8
resistance
5
molecular mapping
4
mapping loci
4
loci confer
4
resistance asian
4
asian rust
4

Similar Publications

The Varroa destructor (hereafter referred to as Varroa) is a major pest of honeybees that is generally controlled using pyrethroid-based acaricides. However, resistance to these insecticides has become a growing problem, driven by the acquisition of knockdown resistance (kdr) mutations in the mite's voltage-gated sodium channel (vgsc) gene. Resistance mutations in the vgsc gene, such as the L925V mutation, can confer resistance to pyrethroids like flumethrin and tau-fluvalinate.

View Article and Find Full Text PDF

Grape downy mildew, caused by poses a threat to grape cultivation globally. Early detection of fungicide resistance is critical for effective management. This study aimed to assess the prevalence and distribution of mutations associated with resistance to Quinone oxide inhibitors (QoI, FRAC 11), Quinone inside inhibitors (QiIs, FRAC 21, cyazofamid), Carboxylic acid amides (CAA, FRAC 41), and Quinone inside and outside inhibitor, stigmatellin binding mode (QioSI, FRAC 45, ametoctradin) in populations in the eastern United States and Canada; and evaluate whether these mutations are linked to fungicide resistance correlate with specific clades.

View Article and Find Full Text PDF

The T315I-inclusive compound mutation, the multiple mutations including the T315I mutation on the same BCR::ABL1 gene, confers resistance to diverse tyrosine kinase inhibitors (TKIs). Development of the F311I/T315I compound mutation has been reported in chronic myeloid leukemia patients who sequentially showed clinical resistance to imatinib and dasatinib. The establishment of a human leukemia model with the T315I-inclusive compound mutation remains an experimental challenge.

View Article and Find Full Text PDF

Green rice leafhopper (GRH, Uhler) is a serious insect pest of rice in the temperate regions of Asia. Myanmar has a high genetic diversity and is located at the center of the origin of rice. To understand the genetic architecture of GRH resistance in Myanmar rice landraces, a genome-wide association study (GWAS) was performed using a diversity panel collected from diverse geographical regions.

View Article and Find Full Text PDF

Objectives: Amikacin is crucial for treating Mycobacterium abscessus (Mab) infections, with resistance primarily attributed to rrs gene mutations. The correlation between specific mutations and amikacin susceptibility, along with the associated fitness cost, requires further investigation.

Methods: We isolated spontaneous amikacin-resistant mutants in vitro and identified their mutation sites in the rrs gene via Sanger sequencing, which were then compared with existing reports.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!