This paper deals with the surface modification of titanium by sodium-ion implantation and with the effect of this modification on structure, corrosion resistance, bioactivity and cytocompatibility. The Na ions were implanted with doses of 1 x 10(17) and 4 x 10(17) ions/cm(2) at an energy of 25 keV. The chemical composition of the surface layers formed during the implantation was examined by secondary-ion mass spectrometry (SIMS) and X-ray photoelectron spectroscopy (XPS), and their microstructure--by transmission electron microscopy (TEM). The corrosion resistance was determined by electrochemical methods in a simulated body fluid (SBF) at a temperature of 37 degrees C, after exposure in SBF for various times. The surfaces of the samples were examined by optical microscopy, by scanning electron microscopy (SEM-EDS), and by atomic force microscopy (AFM). Biocompatibility of the modified surface was evaluated in vitro in a culture of the MG-63 cell line and human osteoblast cells. The TEM results indicate that the surface layers formed during the implantation of Na-ions are amorphous. The results of the electrochemical examinations obtained for the Na-implanted titanium samples indicate that the implantation increases corrosion resistance. Sodium-ion implantation improves bioactivity and does not reduce biocompatibility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10856-008-3431-4 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066, Seoburo, Jangan-gu, Suwon 440-746, Republic of, Korea.
Sodium metal anodes (SMA), featuring high energy content, low electrochemical potential and easy availability, are a compelling option for sustainable energy storage. However, notorious sodium dendrite and unstable solid-electrolyte interface (SEI) have largely retarded their widespread implantation. Herein, porous amorphous carbon nanofiber embedded with Bi nanoparticles in nanopores (Bi@NC) was rationally designed as a 3D host for SMA.
View Article and Find Full Text PDFSci Bull (Beijing)
December 2024
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of Fiber Electronic Materials and Devices, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200433, China. Electronic address:
Adv Mater
September 2024
State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
Small
March 2024
Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China.
The pursuit of high-performance batteries has propelled the investigation into advanced materials and design methodologies. Herein, the yolk-shell MnSe/ZnSe heterojunction encapsulated in hollow carbontubes (MnSe/ZnSe@HCTs) is prepared as a prospective electrode material for sodium/potassium batteries. The band structure in the heterojunction is methodically adjusted and regulated by intentionally utilizing Mn with unpaired electrons in the 3d orbital.
View Article and Find Full Text PDFAdv Mater
July 2023
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
Constructing a homogenous and inorganic-rich solid electrolyte interface (SEI) can efficiently improve the overall sodium-storage performance of hard carbon (HC) anodes. However, the thick and heterogenous SEI derived from conventional ester electrolytes fails to meet the above requirements. Herein, an innovative interfacial catalysis mechanism is proposed to design a favorable SEI in ester electrolytes by reconstructing the surface functionality of HC, of which abundant CO (carbonyl) bonds are accurately and homogenously implanted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!