Nitric oxide (NO) has been implicated in the promotion of neurodegeneration. However, little is known about the relationship between NO and the self-renewal or differentiation capacity of neural stem cells (NSCs) in neurodegenerative disease. In this study, we investigated the effect of NO on self-renewal of NSCs in an animal model for Niemann-Pick type C (NPC) disease. We found that NO production was significantly increased in NSCs from NPC1-deficient mice (NPC1-/-), which showed reduced NSC self-renewal. The number of nestin-positive cells and the size of neurospheres were both significantly decreased. The expression of NO synthase (NOS) was increased in neurospheres derived from the brain of NPC1-/- mice in comparison to wild-type neurospheres. NO-mediated activation of glycogen synthase kinase-3beta (GSK3beta) and caspase-3 was also observed in NSCs from NPC1-/- mice. The self-renewal ability of NSCs from NPC1-/- mice was restored by an NOS inhibitor, L-NAME, which resulted in the inhibition of GSK3beta and caspase-3. In addition, the differentiation ability of NSCs was partially restored and the number of Fluoro-Jade C-positive degenerating neurons was reduced. These data suggest that overproduction of NO in NPC disease impaired the self-renewal of NSCs. Control of NO production may be key for the treatment of NPC disease.

Download full-text PDF

Source
http://dx.doi.org/10.1038/cr.2008.48DOI Listing

Publication Analysis

Top Keywords

npc disease
12
npc1-/- mice
12
neural stem
8
stem cells
8
model niemann-pick
8
niemann-pick type
8
self-renewal nscs
8
gsk3beta caspase-3
8
nscs npc1-/-
8
ability nscs
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!