Insulator-metal transitions are well known in transition-metal oxides, but inducing an insulator-metal transition in the oxide of a main group element is a major challenge. Here, we report the observation of an insulator-metal transition, with a conductivity jump of seven orders of magnitude, in highly non-stoichiometric, amorphous gallium oxide of approximate composition GaO(1.2) at a temperature around 670 K. We demonstrate through experimental studies and density-functional-theory calculations that the conductivity jump takes place at a critical gallium concentration and is induced by crystallization of stoichiometric Ga(2)O(3) within the metastable oxide matrix-in chemical terms by a disproportionation. This novel mechanism--an insulator-metal transition driven by a heterogeneous solid-state reaction--opens up a new route to achieve metallic behaviour in oxides that are expected to exist only as classic insulators.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nmat2164DOI Listing

Publication Analysis

Top Keywords

insulator-metal transition
16
non-stoichiometric amorphous
8
amorphous gallium
8
gallium oxide
8
conductivity jump
8
insulator-metal
5
chemically driven
4
driven insulator-metal
4
transition
4
transition non-stoichiometric
4

Similar Publications

Vanadium dioxide ([Formula: see text]) is a favorable material platform of modern optoelectronics, since it manifests the reversible temperature-induced insulator-metal transition (IMT) with an abrupt and rapid changes in the conductivity and optical properties. It makes possible applications of such a phase-change material in the ultra-fast optoelectronics and terahertz (THz) technology. Despite the considerable interest to this material, data on its broadband electrodynamic response in different states are still missing in the literature.

View Article and Find Full Text PDF

The single crystals of lead-free NaBiTiO were grown using the Czochralski method. The energy gaps determined from X-ray photoelectron spectroscopy (XPS) and optical measurements were approximately 2.92 eV.

View Article and Find Full Text PDF

Vanadium dioxide (VO) has received significant interest in the context of nanophotonic metamaterials and memories owing to its reversible insulator-metal transition associated with significant changes in its optical and electronic properties. The phase transition of VO has been extensively studied for several decades, and the ways how to control its hysteresis characteristics relevant for memory applications have significantly improved. However, the hysteresis dynamics and stability of coexisting phases during the transition have not been studied on the level of individual single-crystal VO nanoparticles (NPs), although they represent the fundamental component of ordinary polycrystalline films and can also act like nanoscale memory units on their own.

View Article and Find Full Text PDF

Dynamic control of the directional scattering of single Mie particle by laser induced metal insulator transitions.

Nanophotonics

August 2024

Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, and College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.

Interference between the electric and magnetic dipole-induced in Mie nanostructures has been widely demonstrated to tailor the scattering field, which was commonly used in optical nano-antennas, filters, and routers. The dynamic control of scattering fields based on dielectric nanostructures is interesting for fundamental research and important for practical applications. Here, it is shown theoretically that the amplitude of the electric and magnetic dipoles induced in a vanadium dioxide nanosphere can be manipulated by using laser-induced metal-insulator transitions, and it is experimentally demonstrated that the directional scattering can be controlled by simply varying the irradiances of the excitation laser.

View Article and Find Full Text PDF

VO is a promising phase change material offering a large contrast of electric, thermal, and optical properties when transitioning from semiconductor to metallic phase. Here we show that a hybrid metamaterial obtained by proper combination of a VO layer and a nanodisk gold array provides a tunable plasmonic gap resonance in the infrared range. Specifically, we have designed and fabricated a metal-insulator-metal gap resonance by inserting sub-wavelength VO film between a flat gold layer and a gold nanodisk resonator array.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!